北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2024, Vol. 47 ›› Issue (2): 81-89.

• 论文 • 上一篇    下一篇

基于深度强化学习的车载边缘计算功率分配方法

邱斌1,王云霄1,肖海林2   

  1. 1. 桂林理工大学
    2. 桂林电子科技大学
  • 收稿日期:2023-03-01 修回日期:2023-03-27 出版日期:2024-04-28 发布日期:2024-01-24
  • 通讯作者: 肖海林 E-mail:xhl_xiaohailin@163.com
  • 基金资助:
    湖北省高等学校优秀中青年科技创新团队计划项目;广西重点研发计划项目;国家自然科学基金资助项目

Deep reinforcement learning-based power allocation in vehicular edge computing networks

1,Yunxiao Wang1,Hailin Xiao   

  • Received:2023-03-01 Revised:2023-03-27 Online:2024-04-28 Published:2024-01-24
  • Contact: Hailin Xiao E-mail:xhl_xiaohailin@163.com

摘要: 针对车载边缘计算环境下车辆移动引起的车载时变信道和任务随机到达问题, 提出了一种基于深度强化学习的计算卸载和功率分配方法。首先, 设计了双向车道场景下基于非正交多址的端-边-云三层卸载模型;接着,结合该模型的通信、计算、缓存资源以及车辆的移动性, 进一步确立了车载用户功率和缓存延迟长期累积总成本最小化的联合优化问题;最后,考虑到车载边缘计算网络的动态、时变和随机特性, 提出了基于深度确定性策略梯度的分布式智能算法,以获取最优功率分配机制。仿真结果显示,相较于传统方法, 所提方法在减少总成本方面具有显著优势。

关键词: 车载边缘计算, 计算卸载, 功率分配, 服务缓存, 深度确定性策略梯度

Abstract: A deep reinforcement learning-based computation offloading and power allocation algorithm is proposed to address the time-varying channel and stochastic task arrival problems caused by the mobility of vehicle in the vehicular edge computing environment. In this paper, we first build a three-layer system model for end-edge-cloud orchestrated computing based on non-orthogonal multiple access in a two-way lane scenario. By combining the communication, computing, cache resources and the mobility of vehicle, a joint optimization problem is designed to minimize the long-term cumulative total system cost consisting of power consumption and cache latency. Furthermore, in view of the dynamics, time-varying and stochastic characteristics in vehicular edge computing networks, a decentralized intelligent algorithm based on deep deterministic policy gradient (DDPG) is proposed for obtaining the power allocation optimization. Compared with conventional baseline algorithms, the simulation results illustrate that the proposed algorithm can achieve a superior performance in reducing the system total cost.

Key words: vehicular edge computing, computation offloading, power allocation, service caching, DDPG

中图分类号: