北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2023, Vol. 46 ›› Issue (6): 95-0.

• 论文 • 上一篇    下一篇

广义增强区间二型FCM的苗族服饰图像分割算法

雷欢,黄成泉,陈阳,覃小素,彭家磊   

  1. 贵州民族大学
  • 收稿日期:2022-10-07 修回日期:2022-11-28 出版日期:2023-12-28 发布日期:2023-12-29
  • 通讯作者: 黄成泉 E-mail:hcq@gzmu.edu.cn
  • 基金资助:
    国家自然科学基金项目(62062024);贵州省科技计划项目(黔科合基础-ZK[2021]一般 342);贵州省研究生教育教学改革重 点课题(YJSJGKT[2021]018);贵州省教育厅滚动支持省属高校科研平台团队项目(黔教技[2022]015)

Miao Costume Image Segmentation Algorithm Generalized Enhanced Interval Type-2 FCM

  • Received:2022-10-07 Revised:2022-11-28 Online:2023-12-28 Published:2023-12-29

摘要: 针对苗族服饰图案色彩鲜艳、形状丰富和纹理复杂等特征而导致分割难度增加等问题,提出了一种新的区间二型模糊集的算法,将广义增强区间二型模糊c均值(FCM)算法应用于苗族服饰图像分割。区间二型模糊集可以有效地处理图像分割过程中的不确定性和模糊性,在分割过程中能够把握更多图像的细节信息;模型在区间二型FCM中加入一个竞争惩罚项来增强算法的鲁棒性和收敛能力;利用增强的KM算法降型和解模糊优化聚类中心以加快模型的运算速度。实验结果表明,所提算法在不同数据集上的分割效果均优于其他算法。

关键词: 服饰图案, 区间二型模糊集, 不确定性, 解模糊, 增强的KM算法

Abstract: For the problem of increased difficulty in segmentation due to the colorful, rich shape, complex texture and other characteristics of Miao costume patterns,  a novel method of interval type-2 fuzzy set is proposed, Miao costume image segmentation algorithm generalized enhanced interval type-2 fuzzy c-means (FCM). Interval type-2 fuzzy sets can effectively deal with the uncertainty and fuzziness in the process of image segmentation, and can grasp more image details. The proposed algorithm that adds a competitive penalty term to the interval type-2 FCM, can obtain high robustness and convergence. Enhanced KM algorithm is used to type-reduction and defuzzification of optimizing the centroid so as to speed up the model. The experimental results show that the proposed algorithm can achieve more accurate segmentation  than that of other algorithms in different datasets.

Key words: costume patterns, interval type-2 fuzzy set, uncertainty, defuzzification, enhanced KM algorithm

中图分类号: