北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2022, Vol. 45 ›› Issue (2): 22-28.doi: 10.13190/j.jbupt.2021-143

• 论文 • 上一篇    下一篇

面向硬件感知的边缘计算卸载和资源分配

郅佳琳, 王楠, 满毅, 滕颖蕾   

  1. 北京邮电大学 电子工程学院, 北京 100876
  • 收稿日期:2021-07-13 发布日期:2021-12-16
  • 通讯作者: 滕颖蕾(1983—),女,教授,邮箱:lilytengtt@bupt.edu.cn。 E-mail:lilytengtt@bupt.edu.cn
  • 作者简介:郅佳琳(1999—),女,硕士生。
  • 基金资助:
    国家重点研发计划项目(2021YFB3300100);国家自然科学基金项目(62171062)

Hardware Model-Aware Joint Offloading and Resources Allocation Optimization

ZHI Jialin, WANG Nan, MAN Yi, TENG Yinglei   

  1. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2021-07-13 Published:2021-12-16

摘要: 传统的边缘计算卸载研究并未涉及计算机硬件实现的细节,计算模型建模粗糙,优化方案精准度低。为此,提出了基于硬件实现的多用户多边缘服务器计算卸载和资源分配联合优化方案,充分考虑了计算过程硬件实现的细节,从计算机指令执行粒度出发,综合计算机输入/输出瓶颈和内存功能模块的能耗,重新建立联合优化模型,并在满足卸载任务时延要求的前提下最小化系统能耗。 此外,为解决动作空间高维的问题,采用了基于深度确定性策略梯度的混合在线二部匹配算法。仿真结果表明,计算过程中的内存能耗不可忽略,且所提出的优化算法能够有效学习最优策略,对降低系统能耗具有显著作用。

关键词: 移动边缘计算, 计算机流水线, 在线二部匹配, 深度强化学习

Abstract: The traditional researches on edge computing offloading do not involve the details of computer hardware implementation. In addition, their computing model is rough, and the optimization scheme has low accuracy. To solve these problems, a hardware-based scheme that jointly optimizes computing offloading and resource allocation for multi-user multi-edge server is proposed. In particular, the details of hardware implementation in the calculation process are considered. From the perspective of the granularity of computer instruction execution, the input/output bottleneck and the energy consumption of memory functional modules are calculated first. Then, the joint optimization model is re-established. Finally, the system energy consumption is minimized on the premise of meeting the delay requirement of offloading tasks. To solve the high-dimensional problem of action space, a hybrid online two-part matching kuhn-munkras algorithm based on deep deterministic policy gradient is adopted. The simulation results show that the memory energy consumption cannot be ignored. Besides, the proposed optimization algorithm can effectively learn the optimal strategy and has a significant effect on reducing the system energy consumption.

Key words: mobile edge computing, computer pipelining, online bipartite matching, deep reinforcement learning

中图分类号: