北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2022, Vol. 45 ›› Issue (4): 21-27.

• 论文 • 上一篇    下一篇

癫痫领域多模态知识图谱的构建初探

李星原1,汪鹏2,申牧1,李蕾3,张琳4   

  1. 1. 北京邮电大学
    2.
    3. 北邮北邮310信箱
    4. 北京邮电大学 信息工程学院 通信网实验室
  • 收稿日期:2021-09-01 修回日期:2021-11-18 出版日期:2022-08-28 发布日期:2022-06-26
  • 通讯作者: 李蕾 E-mail:ijianjian2002@163.com
  • 基金资助:
    北京市科学技术委员会项目;国家自然科学基金项目;北京市自然科学基金项目

Construction of multi-modal knowledge graph in epilepsy

  • Received:2021-09-01 Revised:2021-11-18 Online:2022-08-28 Published:2022-06-26
  • Supported by:
    Program of Beijing Municipal Science and Technology Commission;the National Natural Science Foundation of China;Beijing Municipal Natural Science Foundation

摘要: 命名实体识别和关系抽取是构建知识图谱的两个关键步骤。为了解决癫痫领域缺乏大量标注数据,现有命名实体识别和关系抽取模型的性能会急剧下降的问题,针对癫痫领域论文的数据特点改进了命名实体识别和关系抽取模型。提出了利用相近领域的医疗数据和预训练模型构建的零资源癫痫领域命名实体识别和关系抽取模型。首先评估现有无监督和半监督模型在癫痫领域论文数据集上的性能指标,并在此基础上针对数据集特征引入了域对抗网络和关系判别器,有效提高了命名实体识别和关系抽取模型的性能。还将癫痫患者的脑电特征以视觉模态嵌入知识图谱中,在提高脑电分析可解释性的同时,搭建更加直观的多模态知识图谱。

关键词: 知识图谱, 命名实体识别, 关系抽取, 癫痫

Abstract: Named entity recognition and relation extraction are two key steps to construct a knowledge graph. To solve the problem that the performance of the existing named entity recognition and relation extraction models would sharply decline due to the lack of a large amount of annotated data in the epilepsy domain, the named entity recognition and relation extraction models were improved according to the data characteristics of the papers in the epilepsy domain. A zero-resource named entity recognition and relation extraction model in the epilepsy domain is proposed based on medical data and a pre-training model from similar domains. The performance of the existing unsupervised and semi-supervised models on the epilepsy paper data set was evaluated, and then a domain adversarial network and a relation discriminator were introduced based on the characteristics of the data set to effectively improve the construction effect of the epilepsy domain knowledge graph. EEG features of epilepsy patients were embedded into the knowledge graph in a visual modality. While improving the interpretability of EEG analysis, it builds a more intuitive multi-modal knowledge graph.

Key words: Knowledge graph, Named entity recognition, Relation extraction, Epilepsy

中图分类号: