北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2021, Vol. 44 ›› Issue (1): 52-58.doi: 10.13190/j.jbupt.2019-263

• 论文 • 上一篇    下一篇

基于密集连接网络的驾驶疲劳状态检测方法

王小玉, 韩彤彤, 尚学达   

  1. 哈尔滨理工大学 计算机科学与技术学院, 哈尔滨 150080
  • 收稿日期:2019-12-23 出版日期:2021-02-28 发布日期:2021-09-30
  • 作者简介:王小玉(1971-),女,教授,E-mail:wangxiaoyu@hrbust.edu.cn.
  • 基金资助:
    国家自然科学基金项目(60572153,60972127)

Driving Fatigue State Detecting Method Based on Densely Connected Convolutional Network

WANG Xiao-yu, HAN Tong-tong, SHANG Xue-da   

  1. School of Computer Science Technology, Harbin University of Science and Technology, Harbin 150080, China
  • Received:2019-12-23 Online:2021-02-28 Published:2021-09-30

摘要: 为了解决疲劳驾驶易造成交通事故的问题,提出了基于密集连接网络的驾驶疲劳状态检测方法.首先,借助摄像机采集驾驶状态视频,获取视频帧图像后利用图像处理技术进行图像预处理;利用自适应提升算法检测人脸,再用灰度积分投影和径向对称变换算法定位驾驶员的眼部区域;然后,通过密集连接网络精确判别眼睛状态,在网络中设置了3个密集连接块以减少特征参数和加快训练速度,且采用稀疏化结构以减少存储量和增强特征传播;最后,借助2个疲劳参数综合判断驾驶员的疲劳状态,使检测结果更为准确.定性和定量实验结果证明,该方法在准确率等方面优于现有技术.

关键词: 密集连接网络, 疲劳检测, 人眼定位, 状态检测, 灰度积分投影

Abstract: In order to solve the problem of traffic accidents caused by fatigue driving,a driving fatigue state detection method based on densely connected convolutional networks is proposed. Firstly,a camera is used to collect driving state video,the video frame image is obtained. The image processing technology is used to process images. Then the adaptive Boosting algorithm is used to detect the face,and then the gray integral projection and radial symmetry transformation algorithm are used to locate the driver's eye area. Moreover,the eye state is accurately distinguished through the densely connected network. Three densely connected blocks are set in the network to reduce feature parameters and speed up training. The sparse structure is used to reduce storage and enhance feature propagation. Finally,with the help of two fatigue parameters comprehensively judge the fatigue state of the driver,making the detection result more accurate. It is proved by a large number of qualitative and quantitative experiments that this method is better than the existing technology in terms of accuracy.

Key words: densely connected convolutional network, fatigue detection, human eye positioning, state detection, gray integral projection

中图分类号: