北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2021, Vol. 44 ›› Issue (5): 121-126.doi: 10.13190/j.jbupt.2020-268

• 研究报告 • 上一篇    下一篇

BDCN和U-net边缘生成两阶段修复算法

李海燕1, 王伟华1, 郭磊1, 李海江2, 李红松1   

  1. 1. 云南大学 信息学院, 昆明 650500;
    2. 云南交通投资建设集团有限公司, 昆明 650299
  • 收稿日期:2020-07-01 出版日期:2021-10-28 发布日期:2021-09-06
  • 通讯作者: 郭磊(1974-),男,高级实验师,E-mail:guolei@ynu.edu.cn. E-mail:guolei@ynu.edu.cn
  • 作者简介:李海燕(1976-),女,教授,博士生导师.
  • 基金资助:
    国家自然科学基金项目(61861045);云南省基础研究计划重点项目(202101AS0070031)

Two-Stage Network Inpainting Algorithm Based on BDCN and U-net Edge Generation

LI Hai-yan1, WANG Wei-hua1, GUO Lei1, LI Hai-jiang2, LI Hong-song1   

  1. 1. School of Information Science and Engineering, Yunnan University, Kunming 650500, China;
    2. Yunnan Communications Investment and Construction Group Company Limited, Kunming 650299, China
  • Received:2020-07-01 Online:2021-10-28 Published:2021-09-06

摘要: 为了对图像中大面积不规则缺失区域进行合理的结构修复和精细的纹理重构,提出了一种基于双向级联边缘检测网络(BDCN)和U-net残缺边缘生成的两阶段网络图像修复算法.第一阶段首先基于BDCN网络提取边缘,然后基于U-net架构的边缘生成网络用下采样对缺失图像边缘提取特征,再结合上采样的输入信息和下采样各层信息还原图像边缘纹理细节;第二阶段使用空洞卷积进行下采样和上采样,经过残差网络重建细节丰富的缺失图像.在公开数据集上将所提算法与现有经典算法进行对比,实验结果表明,所提算法能得到合理的结构和精细的纹理细节,优于对比算法.

关键词: 图像修复, 双向级联边缘检测网络边缘提取, U-net残缺边缘生成器, 两阶段网络

Abstract: To repair the large irregular missing areas of an image, and obtain reasonable structure and fine-detailed textures,a two-stage network image inpainting algorithm based on bi-directional cascade network (BDCN) for perceptual edge detection and U-net incomplete edge generation is proposed. Firstly,the algorithm edges are extracted using the BDCN network. In the first stage,down-sampling is used to extract the features of the missing image edges based on the edge generation network of the U-net network architecture. The information inputted by the up-sampling layer and the information of each down-sampling layer is then combined to restore the image edge texture details. In the second stage,the hole convolution is applied for down-sampling and up-sampling,which adopts the residual network to reconstruct the missing image with rich details. The proposed algorithm is compared with the existing classic algorithm on the public datasets. Experimental results demonstrate that the proposed algorithm can obtain reasonable results and fine texture details,and its performance is superior to those of the contrast algorithms.

Key words: image inpainting, bi-directional cascade network for perceptual edge detection, U-net incomplete edge generator, the two-stage network

中图分类号: