[1] Huang Haosheng. Progress in location-based services 2014[J]. Lecture Notes in Geoinformation and Cartography, 2016, 46(6):0463.
[2] Sun Yanming, Chen Min, Hu Long, et al. ASA:against statistical attacks for privacy-aware users in location based service[J]. Future Generation Computer Systems, 2017(70):48-58.
[3] He Wen. Research on LBS privacy protection technology in mobile social networks[C]//IEEE, Advanced Information Technology, Electronic and Automation Control Conference. New York:IEEE Press, 2017:73-76.
[4] Huo Zheng, Meng Xiaofeng. A Survey of trajectory privacy-preserving techniques[J]. Chinese Journal of Computers, 2011, 34(10):1820-1830.
[5] Naghizade E, Bailey J, Kulik L, et al. How private can i be among public users[C]//UbiComp2015, the 2015 ACM International Joint Conference. Osaka, ACM, 2015:1137-1141.
[6] Zhang Yuan, Chen Qingjun, Zhong Sheng. Privacy-preserving data aggregation in mobile phone sensing[J]. IEEE Transactions on Information Forensics & Security, 2016, 11(5):980-992.
[7] 万盛, 李凤华, 牛犇, 等. 位置隐私保护技术研究进展[J]. 通信学报, 2016, 37(12):124-141. Wansheng, Li Fenghua, Niu Ben, et al. Research progress on location privacy-preserving techniques[J]. Journal on Communications, 2016, 37(12):124-141.
[8] Lee Ken C K, Zheng Baihua, Chen C, et al. Efficient index-based approaches for skyline queries in location-based applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(11):2507-2520.
[9] Pan Xiao, Meng Xiaofeng, Xu Jianliang. Distortion-based anonymity for continuous queries in location-based mobile services[C]//ACM Sigspatial International Symposium on Advances in Geographic Information Systems. Washington:DBLP, 2009:256-265.
[10] Freudiger J, Shokri R, Hubaux J P. On the optimal placement of mix zones[C]//International Symposium on Privacy Enhancing Technologies. Springer, Berlin:Springer-Verlag, 2009:216-234.
[11] Kato R, Iwata M, Hara T, et al. A dummy-based anonymization method based on user trajectory with pauses[C]//International Conference on Advances in Geographic Information Systems. New York:ACM, 2012:249-258.
[12] 霍峥, 孟小峰, 黄毅. PrivateCheckIn:一种移动社交网络中的轨迹隐私保护方法[J]. 计算机学报, 2013, 36(4):716-726. Huo Zhen, Meng Xiaofeng, Huang Yi. PrivateCheckIn:a trajectory privacy preserving method in mobile social networks[J]. Journal of Computer Science, 2013, 36(4):716-726.
[13] Niu Ben, Zhu Xiaoyan, Chi Haotian, et al. 3PLUS:Privacy-preserving pseudo-location updating system in location-based services[C]//2013 IEEE Wireless Communications and Networking Conference. New York:IEEE, 2013:1-8.
[14] Chen Rui, Benjamin C. M. Fung, Noman Mohammed, et al. Privacy-preserving trajectory data publishing by local suppression[J]. Information Sciences, 2013, 231(1):83-97.
[15] 赵婧, 张渊, 李兴华, 等. 基于轨迹频率抑制的轨迹隐私保护方法[J]. 计算机学报, 2014, 37(10):2096-2106. Zhao Jing, Zhang Yuan, Li Xinghua, et al. Trajectory privacy preserving method based on trajectory frequency suppression[J]. Acta Computer Science, 2014, 37(10):2096-2106.
[16] 李凤华, 张翠, 牛犇, 等. 高效的轨迹隐私保护方案[J]. 通信学报, 2015, 36(12):114-123. Li Fenghua, Zhang Cui, Niu Ben, et al. Efficient trajectory privacy protection scheme[J]. Journal on Communications, 2015, 36(12):114-123.
[17] Ye A, Li Yacheng, Li Xu. A novel location privacy-preserving scheme based on l-queries for continuous LBS[J]. Computer Communications, 2016:1-10.
[18] Sun Gang, Liao Dan, Li Hui, et al. L2P2:A location-label based approach for privacy preserving in LBS[J]. Future Generation Computer Systems, 2017, 74:375-384.
[19] Li Xinghua, Miao MeiXia, Liu Hai, et al. An incentive mechanism for K-anonymity in LBS privacy protection based on credit mechanism[J]. Soft Computing, 2017, 21(14):3907-3917.
[20] Lam T, Rietsch K. Total positivity, Schubert positivity, and geometric Satake[J]. Journal of Algebra, 2016, 460:284-319. |