北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2018, Vol. 41 ›› Issue (2): 114-118.doi: 10.13190/j.jbupt.2017-183

• 研究报告 • 上一篇    下一篇

基于对信号功率谱拟合特征提取的信号识别方法

田昊旻1,2, 尹良1,2, 马跃3, 李书芳1,2   

  1. 1. 北京邮电大学 先进信息网络北京实验室, 北京 100876;
    2. 北京邮电大学 网络体系构建与融合北京市重点实验室, 北京 100876;
    3. 北京邮电大学 计算机科学与技术学院, 北京 100876
  • 收稿日期:2017-09-12 出版日期:2018-04-28 发布日期:2018-03-17
  • 作者简介:田昊旻(1993-),男,硕士生,E-mail:haomintian1@163.com;李书芳(1963-),女,教授,博士生导师.
  • 基金资助:
    国家自然科学基金项目(61427801)

Signal Recognition Based on Signal Power Spectrum Fitting Feature Extraction

TIAN Hao-min1,2, YIN Liang1,2, MA Yue3, LI Shu-fang1,2   

  1. 1. Beijing Key Laboratory of Network System Architecture and Convergence, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. Computer Network Research Center, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    3. School of Computer Science and Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2017-09-12 Online:2018-04-28 Published:2018-03-17

摘要: 针对通信信号业务种类识别问题,提出利用机器学习领域的线性回归算法和多项式拟合模型提取信号功率谱的多项式拟合因子作为信号的统一特征来构建训练集,并在深度学习平台keras上构建了全连接的神经网络分类器模型.相比传统的方法,新方法具有对无线电信号统一表征而无需对业务逐个提取个性化特征的优点.选取实际无线电监测数据中的码分多址(CDMA)上行、CDMA下行、增强型全球移动通信系统(EGSM)上行、EGSM下行、无线局域网(WLAN)以及长期演进(LTE)6种信号的功率谱数据作为数据集,通过验证得到了97%的分类准确率,并证明了该方法的可行性.

关键词: 信号识别, 深度学习, 特征提取, 多项式回归

Abstract: Aiming at the problem of communication signal service type identification, the author proposes a polynomial fitting factor that extracts the power spectrum of the signal using the linear regression algorithm and the polynomial fitting model in machine learning field as a unified feature of the signal to construct the training set. A multi-layer fully connected neural network classifier model was built on depth learning platform. Compared with the traditional ones, this method has advantages of unifying the radio signal without the need of individual service to extract the personalized features. The power spectrum data of code division multiple access(CDMA) uplink, CDMA downlink, extended global system for mobile(EGSM) uplink, EGSM downlink, wireless local area networks (WLAN) and long time evolution (LTE) signals in the actual radio monitoring data are selected as data set, and 97% classification accuracy is verified. that this method is proven feasible.

Key words: signal recognition, deep learning, future extraction, polynomial regression

中图分类号: