北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2017, Vol. 40 ›› Issue (5): 67-74.doi: 10.13190/j.jbupt.2016-284

• 论文 • 上一篇    下一篇

基于缺陷检测难度的测试用例检错能力模型

谭立力1, 王雅文1, 邢颖2, 王前1   

  1. 1. 北京邮电大学 网络与交换国家重点实验室, 北京 100876;
    2. 北京邮电大学 自动化学院, 北京 100876
  • 收稿日期:2016-12-02 出版日期:2017-10-28 发布日期:2017-11-21
  • 作者简介:谭立力(1976-),男,博士生,E-mail:tanlili@bupt.edu.cn;王雅文(1983-),女,副教授.
  • 基金资助:
    国家自然科学基金项目(61202080);广西云计算与大数据协同创新中心、广西高校云计算与复杂系统重点实验室资助(YD16508)

Modeling Test Case Fault-detecting Capacity Based on Fault Detection Difficulty Level

TAN Li-li1, WANG Ya-wen1, XING Ying2, WAN Qian1   

  1. 1. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. Automation School, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2016-12-02 Online:2017-10-28 Published:2017-11-21

摘要: 在经典的变异评分计算过程中,因为不考虑被播种软件缺陷的检测难度而使得变异评分的可信性受到质疑.因此提出一种基于缺陷检测难度评价测试用例集合的方法.以logistic回归为基础,利用经验回归方程建立缺陷的识别概率与缺陷检测难度之间的数量关系.借助关系曲线下的面积,变异评分被重新定义.新定义的变异评分不但不受缺陷样本的检测难度影响,而且规避了因等价变异体的出现而使得经典变异评分的计算不准确的问题.

关键词: 软件可测试性, 变异测试, 随机测试用例生成, logistic回归

Abstract: The credibility of mutation score is questioned because it is computed without regard to fault detection difficulty level. A fault-detecting capacity evaluation model about test suit considering fault detection difficulty level is suggested. Based on logistic regression, the quantitative relation between the fault recognition probability and fault detection difficulty level is expressed. With the area under this relation curve, the mutation score is redefined. The new defined mutation score is not affected by fault detection difficulty level and avoid inaccuracy of classical mutation score because of the appearance of equivalent mutants.

Key words: software testability, mutation testing, random test case generation, logistic model

中图分类号: