北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2017, Vol. 40 ›› Issue (5): 55-60.doi: 10.13190/j.jbupt.2017-009

• 论文 • 上一篇    下一篇

基于Jacobi迭代的大规模MIMO系统低复杂度软检测算法

申滨1, 赵书锋1, 黄龙杨2   

  1. 1. 重庆邮电大学 移动通信重点实验室, 重庆 400065;
    2. 中国民用航空飞行学院, 四川 德阳 618300
  • 收稿日期:2017-02-07 出版日期:2017-10-28 发布日期:2017-11-21
  • 作者简介:申滨(1978-),男,教授,E-mail:shenbin@cqupt.edu.cn.
  • 基金资助:
    国家科技重大专项基金项目(2016ZX03001010-004)

Low-Complexity Soft-Output Signal Detection Based on Jacobi Iterative Method for Uplink Large-Scale MIMO Systems

SHEN Bin1, ZHAO Shu-feng1, HUANG Long-yang2   

  1. 1. Chongqing Key Laboratory of Mobile Communications, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
    2. Civil Aviation Flight University of China, Sichuan Deyang 618300, China
  • Received:2017-02-07 Online:2017-10-28 Published:2017-11-21

摘要: 基于Jacobi迭代提出一种低复杂度信号检测算法,在算法实现中避免了矩阵求逆运算.数学推导证明,该算法应用于MMSE检测时是收敛的,与传统的Neumann级数展开方法对比,能达到与其完全相同的检测性能,并且在任意迭代次数下能将复杂度保持在OK2),而后者当级数展开项数大于等于3时复杂度上升为OK3).为了进一步将Jacobi迭代应用到软判决中,提出了一种用于信道译码的LLR的近似计算方法.仿真结果表明,经过几次迭代,Jacobi迭代算法收敛较快,并接近MMSE检测性能.

关键词: 大规模多输入多输出, 矩阵求逆, 低复杂度, Neumann级数, Jacobi迭代, 软判决

Abstract: Based on Jacobi iterative method, a low-complexity detection algorithm which can circumvent the matrix inverse operation was proposed. The proposed algorithm was proved to be convergent when it is applied in the MMSE detection scheme, and it can achieve the same performance of the classical Neumann series expansion. Unlike conventional Neumann method with the number of iterations exceeding three (i ≥ 3), whose computational complexity is increasing to O(K3), the proposed algorithm can keep it consistently at O(K2) with arbitrary number of iterations. In order to employ that in soft decision, an approximated method was adopted to compute log-likelihood ratios for soft channel decoding. Simulations verify that the proposed algorithm can converge rapidly and achieve its performance quite close to that of the MMSE algorithm with only a small number of iterations.

Key words: massive multiple-input multiple-output, matrix inversion, low-complicity, Neumann series, Jacobi, soft decision

中图分类号: