北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2017, Vol. 40 ›› Issue (6): 24-29.doi: 10.13190/j.jbupt.2016-288

• 论文 • 上一篇    下一篇

基于相似度检测的欠定混合矩阵盲估计

付卫红1,2, 周新彪1, 农斌1, 王川川3   

  1. 1. 西安电子科技大学 通信工程学院, 西安 710071;
    2. 西安中电科西电科大雷达技术协同创新研究院有限公司, 西安 710071;
    3. 电子信息系统复杂电磁环境效应国家重点实验室, 河南 洛阳 471003
  • 收稿日期:2016-12-15 出版日期:2017-12-28 发布日期:2017-12-28
  • 作者简介:付卫红(1979-),女,副教授,E-mail:whfu@mail.xidian.edu.cn.
  • 基金资助:
    国家自然科学基金项目(61201134);高等学校学科创新引智计划项目(D08038)

Blind Estimation of Underdetermined Mixing Matrix Based on Similarity Measurement

FU Wei-hong1,2, ZHOU Xin-biao1, NONG Bin1, WANG Chuan-chuan3   

  1. 1. School of Telecommunication Engineering, Xidian University, Xi'an 710071, China;
    2. Collaborative Innovation Center of Information Sensing and Understanding, Xi'an 710071, China;
    3. State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, Henan Luoyang 471003, China
  • Received:2016-12-15 Online:2017-12-28 Published:2017-12-28
  • Supported by:
     

摘要: 针对现有欠定盲分离混合矩阵估计方法中存在的估计精度低以及时间复杂度高等缺点,提出一种基于相似度检测的欠定混合矩阵估计方法.该方法能够在没有任何先验信息的条件下自适应地估计出源信号数目以及混合矩阵,而且不需要进行迭代,时间复杂度低.仿真结果表明,与现有的一些混合矩阵估计方法,如改进K-均值聚类法和拉普拉斯势函数法相比,所提出的方法在源信号数目估计准确率、混合矩阵估计精度以及时间复杂度等方面都具有明显优势.

关键词: 欠定盲分离, 源数目估计, 混合矩阵盲估计, 相似度检测

Abstract: A new algorithm based on similarity measurement was proposed in order to address the issue of low estimation accuracy and high computational complexity in the existing algorithms for underdetermined mixing matrix blind estimation. The proposed algorithm can estimate the number of source signals and the mixing matrix automatically without any prior information or much iteration. Compared with the existing algorithms such as the K-means clustering and the Laplace's potential function method, the simulations turn out that the proposed has obvious advantages in the estimation accuracy of the number of source signals and the estimation precision of mixing matrix and the computational complexity.

Key words: underdetermined blind separation, blind estimation of the source number, estimation of mixing matrix, similarity measurement

中图分类号: