北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2016, Vol. 39 ›› Issue (6): 110-115.doi: 10.13190/j.jbupt.2016.06.021

• 研究报告 • 上一篇    下一篇

Kalman滤波-BP神经网络在执行机构自主定位中的应用

胡燕祝, 李雷远   

  1. 北京邮电大学 自动化学院, 北京 100876
  • 收稿日期:2016-04-14 出版日期:2016-12-28 发布日期:2016-11-29
  • 作者简介:胡燕祝(1970-),男,教授,博士生导师;李雷远(1985-),男,博士生,E-mail:lileiyuan1985@163.com.
  • 基金资助:
    国家自然科学基金项目(61503034);北京市科技计划项目(Z131100004513006)

The Application of Kalman Filtering-BP Neural Network in Autonomous Positioning of End-Effector

HU Yan-zhu, LI Lei-yuan   

  1. Institute of Automation, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2016-04-14 Online:2016-12-28 Published:2016-11-29

摘要: 在执行机构对目标物体进行自主定位过程中,定位误差的实时计算、误差修正和状态分析往往比较困难.为此,提出基于三帧差法的Kalman滤波算法进行末端动态捕捉,利用反向传输(BP)神经网络分类思想进行目标识别,基于点云库的点云提取和处理算法,获得末端和目标物体的空间坐标.最后,将散乱点群进行网格化和3D空间插值.实验结果表明,算法能实时检测并跟踪运动末端,预测精度达到99%,且目标物体的识别率为99%,并可在短时间内修正定位误差,使末端中心点逐步收敛到目标质心,自主定位成功.用三维拟合法对算法的有效性进行验证,并对定位过程进行了状态分析.新算法能完成执行机构的自主定位,省去了相机标定过程,提高了系统效率.

关键词: 自主定位, 曲面拟合, 执行机构末端, 反向传输神经网络, 点云库

Abstract: The real-time calculation of positioning error, error correction and state analysis is a difficult challenge in the process of end-effector autonomous positioning. In order to solve this problem, the Kalman filtering based on three-frame subtraction is proposed to capture the moving end-effector. Back propagation (BP) neural network is adopted to recognize the target. And 3D information extraction based point cloud library (PCL) is described to calculate the space coordinates of the end-effector and the target. The scattered points are processed by gridding and interpolation. Experiments demonstrate that the end-effector positioning can be corrected in a short time. The prediction accuracy of position reaches 99% and the recognition rate of 99% is achieved for target object. Furthermore, the gradual convergence of end-effector center (EEC) to the target center (TC) shows that the autonomous positioning is successful. The algorithm effectiveness is also validated by 3D fitting, but the camera calibration is not required. The system efficiency is improved.

Key words: autonomous positioning, surface fitting, end-effector, back propagation neural network, point cloud library

中图分类号: