北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2016, Vol. 39 ›› Issue (3): 39-43.doi: 10.13190/j.jbupt.2016.03.006

• 论文 • 上一篇    下一篇

基于时间序列的蜂窝网络能量优化方法

高岭, 陈艳, 王海, 任杰   

  1. 西北大学 信息科学与技术学院, 西安 710127
  • 收稿日期:2015-11-21 出版日期:2016-06-28 发布日期:2016-06-27
  • 作者简介:高岭(1964-),男,教授,E-mail:gl@nwu.edu.cn.
  • 基金资助:

    国家自然科学基金项目(61572041,61373136);陕西省工业攻关项目(2014k05-42)

A Method of Energy Optimization Based on Time Series for Cellular Network

GAO Ling, CHEN Yan, WANG Hai, REN Jie   

  1. School of Information Science and Technology, Northwest University, Xi'an 710127, China
  • Received:2015-11-21 Online:2016-06-28 Published:2016-06-27

摘要:

针对移动终端在蜂窝网络中的能耗过高问题,提出了一种基于时间序列的能量优化算法——平衡优化算法(BOA).该算法对移动终端在蜂窝网络中传输的数据块建立自回归滑动平均模型,通过预测下一个数据块的到达时间来动态调整尾巴时间,达到降低能耗的目的.实验结果及分析表明,BOA能达到93.86%的模型匹配率;相比于原标准下的Fixed-tail算法,能达到42.25%的能量优化效果,且用户使用移动终端时间越长,能量优化效果越好.

关键词: 蜂窝网络, 能量优化, 尾巴时间, 自回归滑动平均模型

Abstract:

Aiming at the high energy consumption of mobile terminal under cellular networks, a new energy optimization algorithm balance optimization algorithm (BOA) based on time series is proposed to improve the energy efficiency of smartphones. The proposed algorithm builds the auto-regressive and moving average model for the data blocks in the cellular network, and dynamically adjusts the tail time to achieve the purpose of reducing the energy consumption by predicting the arrival time of the next block. Experiments show that BOA can achieve the average model matching rate up to 93.86%. Compared to traditional fixed-tail algorithm, the BOA enables reduce energy consumption by 42.25%,and analysis shows that the longer smartphones are used, the higher energy efficiency can be achieved.

Key words: cellular network, energy optimization, tail time, auto-regressive and moving average model

中图分类号: