北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2014, Vol. 37 ›› Issue (s1): 120-124.doi: 10.13190/j.jbupt.2014.s1.023

• 研究报告 • 上一篇    下一篇

网络资源中基于K-Means聚类的个性化推荐

王鑫, 黄忠义   

  1. 潍坊学院 计算机工程学院, 山东 潍坊 261061
  • 收稿日期:2014-01-02 出版日期:2014-06-28 发布日期:2014-06-28
  • 作者简介:王 鑫(1969- ),男,副教授,E-mail:wangxin@wfu.edu.cn.
  • 基金资助:

    国家星火计划项目(2013GA740109)

Network Resource Personalized Recommendation Based on K-Means Clustering

WANG Xin, HUANG Zhong-yi   

  1. School of Computer Engineering, Weifang University, Shandong Weifang 261061, China
  • Received:2014-01-02 Online:2014-06-28 Published:2014-06-28
  • Supported by:
     

摘要:

为了实现在网络资源中为网络用户提供针对兴趣爱好的推荐项目,提出了一种基于K-means聚类的应用于动态多维社会网络的个性化推荐算法.首先根据用户评分数据对用户进行建模,并根据评分数据集构建多维用户网络,再加入局域世界演化理论形成动态多维网络;然后根据改进的K-means算法对用户聚类;最后根据最近邻居得到目标用户的预测评分作出推荐,从而形成一种应用于动态多维社会网络中的个性化推荐算法.实验表明,相比协同过滤个性化推荐系统,新推荐策略的预测值和真实值之间的误差较小,个性化推荐水平得到了一定程度的提高.

关键词: 个性化推荐, K-means聚类算法, 动态多维网络

Abstract:

A network resource personalized recommendation method based on K-means clustering algorithm is presented for dynamic multidimensional social network. Firstly, the user is modeled according to the user rating data, and a multidimensional network is constructed by collecting all the users' rating data, and then a dynamic multidimensional network could be formed with the help of local world evolving network model. Secondly, the network users are clustered by using the improved K-means algorithm. Finally, the objective user's rating could be forecasted and obtained by referring the nearest neighbors, and the personalized recommendations could be made. So far, a network resource personalized recommendation method suitable for dynamic multidimensional social network is formed. The experimental results show that the new recommendation method could reduce the error between the prediction value and the true value by comparing with the collaborative filtering recommendation system, and hereby, the new recommendation method could achieve the improved personalized recommendations.

Key words: personalized recommendations, K-means clustering algorithm, dynamic multidimensional network

中图分类号: