北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2014, Vol. 37 ›› Issue (3): 120-124.doi: 10.13190/j.jbupt.2014.03.024

• 研究报告 • 上一篇    

电动汽车加电站电池配送路径优化

修佳鹏1, 陈晨2, 杨正球1, 刘辰2   

  1. 1. 北京邮电大学 软件学院, 北京 100876;
    2. 北京邮电大学 计算机学院, 北京 100876
  • 收稿日期:2013-10-18 出版日期:2014-06-28 发布日期:2014-06-08
  • 作者简介:修佳鹏(1977-),女,讲师,E-mail:xiujiapeng@bupt.edu.cn.
  • 基金资助:

    国家科技支撑计划项目(2011BAG02B00)

Research on Path Optimization of Electric Vehicle Power Station Battery Dispatching

XIU Jia-peng1, CHEN Chen2, YANG Zheng-qiu1, LIU Chen2   

  1. 1. School of Software Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2013-10-18 Online:2014-06-28 Published:2014-06-08

摘要:

在分析电动汽车加电站运营模式的基础上,根据电动汽车加电站需求动态变化的特点,建立了加电站电池配送路径问题的动态车辆调度模型. 利用自适应准则改进遗传算法,构造了自适应遗传算法;针对动态车辆调度问题实时性强的特点,设计了"初始化路径制定+实时动态调度"的两阶段求解策略,通过信息更新插入动态需求加电站,对已产生的计划路径进行局部优化调整,仿真计算结果验证了模型和算法的有效性.

关键词: 加电站, 电池配送, 路径优化, 自适应遗传算法

Abstract:

On the basis of analyzing electric vehicle power station operation mode and aiming at the dynamic changes of power station requirements, a two-phase mathematic programming model based on power station center is presented for dynamic vehicle routing problem. And a new adaptive genetic algorithm is designed for dynamic vehicle routing problem. Aiming at the real time of dynamic vehicle scheduling problem, the two-phase solution of "initial path stage" and "real-time dynamic scheduling stage" are established, which optimizes sub-routes through continuously updating information and inserting the dynamic needs power stations. Simulation validates the effectiveness of the model and the algorithm.

Key words: power station, battery distribution, optimizing path, adaptive genetic algorithm

中图分类号: