[1] Carlson J M, Doyle J. Complexity and robustness[C]∥Proceedings of National Academy of Science. United States: PNAS, 2002: 2538-2545.
[2] Strogatz Steven H. Exploring complex networks[J]. Nature, 2001, 410: 268-276.
[3] Réka Albert, Albert-László Barabási. Statistical Mechanics of Complex Networks[J]. Reviews of Modern Physics, 2002, 74(1): 47-97.
[4] George Johnson. First cells, then species, now the web[EB/OL]. United States: The New York Times Company, 2000[2005-08-01]. http:∥www.nytimes.com/2000/12/26/science/26WEBS.html?pagewanted=all.
[5] Albert-László Barabási, Réka Albert, Hawoong Jeong. Scale-free characteristics of random networks: the topology of the world-wide web[J]. Physica A, 2000, 281: 69-77.
[6] Adamic L. Zipf, power-laws, and pareto, a ranking tutorial. United States: Hewlett-Packard Development Company, 2000[2005-08-01]. http:∥www.hpl.hp.com/shl/papers/ranking/.
[7] Faloutsos M, Faloutsos P, Faloutsos C. On power law relationships of the Internet topology[C]∥Proceedings SIGCOMM'99. United States: ACM Press, 1999:251-262.
[8] Adamic L, Huberman B. Power-law distribution of the world-wide web[J]. Science, 2000, 287(24): 2115.
[9] Duncan James Watts. The structure and dynamics of small-world systems [D]. United States: Cornell University, 1997.
[10] Newman M E J. Models of the small world[J]. Stat Phys, 2000, 101: 819-841.
[11] Réka Albert, Hawoong Jeong, Albert-László Barabási. Diameter of the world-wide web[J]. Nature, 1999, 401: 130-131.
[12] Adamic L. The small world web[C]∥European Conference on Digital Libraries. France: Springer, 1999: 443-454.
[13] 李颖, 山秀明,任勇. 具有幂律分布的因特网平均最短长度估计[J]. 物理学报, 2004, 53(11): 3695-3700.
Li Ying, Shan Xiuming, Ren Yong. Average path length of internet with power law degree distribution[J]. ACTA Physica Sinca, 2004, 53(11):3695-3700.
[14] Albert-László Barabási, Réka Albert. Emergence of scaling in random networks[J]. Science, 1999, 286: 509-512.
[15] Krapivsky P L, Redner S. A statistical physics perspective on web growth[J]. Computer Networks, 2002, 39: 261-276.
[16] Dorogovtsev S N, Mendes J F F, Samukhin A N. Structure of growing networks with preferential linking[J]. Phys Rev Lett, 2000, 85(21): 4633-4636.
[17] Dorogovtsev S N, Mendes J F F. Evolution of networks with aging of sites[J]. Phys Rev E, 2000, 62(2): 1842-1845.
[18] Réka Albert, Albert-László Barabási. Topology of evolving networks: local events and universality[J]. Phys Rev Lett, 2000, 85(24): 5234-5237.
[19] Ginestra Bianconi, Albert-László Barabási. Bose-Einstein condensation in complex networks[J]. Phys Rev Lett, 2001, 86(24): 5632-5635.
[20] Wang Wenxu, Wang Binghong, Bo Hu, et al. General dynamics of topology and traffic on weighted technological networks[J]. Phys Rev Lett, 2005, 94:188702.
[21] Leland W, Taqqu M, Willinger W, et al. On the self-similar nature of Eethernet traffic[J]. IEEE/ACM Transactions on Networking, 1994, 2(1): 1-15.
[22] William Stallings. High-speed network TCP/IP and ATM design principle[M]. 北京:电子工业出版社, 1999.
[23] Willinger W, Taqqu M S, Sherman R. Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at source level[J]. ACM Computer Communication Review, 1995, 25(4): 100-113.
[24] 袁坚, 任勇, 刘锋, 等. 复杂计算机网络中的相变和整体关联行为[J]. 物理学报, 2001, 50(7): 1221-1225.
Yuan Jian, Ren Yong, Liu Feng, et al. Phase transition and collective correlation behavior in the complex computer network[J]. ACTA Physica Sinca, 2001, 50(7): 1221-1225.
[25] 刘锋, 任勇, 山秀明. 互联网络数据包传输的一种简单元胞自动机模型[J]. 物理学报, 2002, 51(06): 1175-7780.
Liu Feng, Ren Yong, Shan Xiuming. A simple cellular automata model for packet transport in the internet[J]. ACTA Physica Sinca, 2002, 51(06): 1175-7780.
[26] Tuan T, Park K. Multiple time scale congestion control for self-similar network traffic[J]. Performance Evaluation, 1999, 36-37(1-4): 359-386.
[27] Réka Albert, Hawoong Jeong, Barabási Albert-László. Attack and error tolerance in complex networks[J]. Nature, 2000, 406: 378-382.
[28] Callaway Duncan S, Newman M E J, Steven H Strogatz, et al. Network robustness and fragility: percolation on random graphs[J]. Phys Rev Lett, 2000, 85(25): 5468-5471.
[29] Reuters. Scientists spot Achilles heel of the Internet. United States: CNN, 2000[2005-07-15]. http:∥archives.cnn.com/2000/TECH/computing/07/26/science.internet.reut/.
[30] Adilson E. Motter, Takashi Nishikawa, Ying-Cheng Lai. Range-based attack on links in scale-free networks: are long-range links responsible for small-world phenomenon[J]. Phys Rev E, 2002, 66: 065103.
[31] Pastor-Satorras Romualdo, Alessandro Vespignani. Epidemic Spreading in Scale-Free Networks[J]. Phys Rev Lett, 2001, 86(14): 3200-3203.
[32] Bornholdt, Schuster. Handbook of Graphs and Networks: from the Genome to the Internet[M]. Berlin: Wiley-VCH, 2002.
[33] Moreno Y, Pastor-Satorras R, Vespignani A. Epidemic outbreaks in complex heterogeneous networks[J]. Eur Phys J B, 2002, 26: 521-529.
[34] Eguíluz Víctor M, Konstantin Klemm. Epidemic threshold in structured scale-free networks[J]. Phys Rev Lett, 2002, 89: 108701.
[35] Zoltan Dezso, Albert-László Barabási. Halting viruses in scale-free networks[J]. Phys Rev E, 2002, 65: 055103.
[36] Carlson J M, Doyle J. Highly optimized tolerance: a mechanism for power laws in designed systems[J]. Phys Rev E, 1999, 60: 1412-1427.
[37] Carlson J M, Doyle J. Highly optimized tolerance and generalized source coding[J]. Phys Rev Lett, 2000, 84: 5656-5659.
[38] Carlson J M , Doyle J. Highly optimized tolerance: robustness and design[J]. Phys Rev Lett, 2000, 84:2529-2532.
[39] Zhou Tong, Carlson J M. Dynamics and changing environments in highly optimized tolerance[J]. Phys Rev E, 2000, 62(3): 3197-3204.
[40] Effros M. Optimal modeling for complex system design[J]. IEEE Signal Processing Magazine, 1998, 15(6): 51-73.
[41] 彭仕政. 非线性系统的随机过程[M]. 贵阳:贵州人民出版社, 2001.
Peng Shizheng. Nonlinear systems random process[M]. Guiyang: Guiyang Press, 2001.
[42] Hughes. Random walks and random environments[M]. New York: Oxford University Press, 1995.
[43] Badii R, Politi A. Complexity: hierarchical structures and scaling in physics[M]. Beijing:Tsinghua University Press, 2000.
[44] Paul Meakin. Fractals, scaling and growth far from equilibrium[M]. UK: Cambridge University Press, 1998.
[45] 于渌, 郝柏林. 相变和临界现象[M]. 北京:科学出版社, 1984.
Yu Lu, Hao Bolin. Phase transition and critical phenomenon[M]. Beijing: Science Press,1984.
[46] Gao Jianbo. Multiplicative multifractal modeling of long-range-dependent traffic in computer communications networks[D]. California Institute of Technology, 2000.
[47] Gary Taubes. Fractals reemerge in the new math of the Internet[J]. Science, 1998, 281: 1947-1948.
[48] Holme P, Kim B J, Yoon C N, et al. Attack vulnerability of complex networks[J]. Phys Rev E, 2002, 65: 056109. |