北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2013, Vol. 36 ›› Issue (3): 7-10,15.doi: 10.13190/jbupt.201303.6.zhaozhch

• 论文 • 上一篇    下一篇

由上下文和相关向量决策的滚动字幕检测算法

赵志诚1,2, 贾国利1, 蔡安妮1   

  1. 1. 北京邮电大学 信息与通信工程学院, 北京 100876;
    2. 北京邮电大学 网络系统与网络文化重点实验室, 北京 100876
  • 收稿日期:2012-12-27 出版日期:2013-06-30 发布日期:2013-06-30
  • 作者简介:赵志诚(1976—), 男, 讲师, 博士, E-mail: zhaozc@bupt.edu.cn.
  • 基金资助:

    国家自然科学基金项目(61101212,90920001); 国家科技支撑计划项目(2012BAH63F00); 国家高技术研究发展计划项目(2012AA012505); 国家科技重大专项项目(2012ZX03005008)

Moving Caption Detection Using Context and Relevance Vector Discriminant Analysis

ZHAO Zhi-cheng1,2, JIA Guo-li1, CAI An-ni1   

  1. 1. School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. Beijing Key Laboratory of Network System and Network Culture, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2012-12-27 Online:2013-06-30 Published:2013-06-30

摘要:

提出了一种基于时空上下文特征和相关向量机的视频滚动字幕检测算法. 可检测视频关键帧中的角点,并估计出角点上的稀疏光流;在对光流场优化的基础上,提出一种新的融合静态和动态特性的滚动字幕统计描述方法,进而结合多个关键帧特征建立起滚动字幕的时空上下文联系;引入相关向量机进行决策. 实验结果表明,该算法优于现有4种典型方法,综合性能也略好于基于支持向量机的方法.

关键词: 角点, 相关向量机, 稀疏光流, 滚动字幕, 上下文特征

Abstract:

A moving caption detection method based on relevance vector machine (RVM) and the context of moving caption is proposed. Harris corner detector is used to determine caption region of video keyframes, and then the sparse optical flow field is obtained from Horn-Schunck(HS) optical flow algorithm, meanwhile, the motion and static text features is extracted respectively as well. A spatial-temporal context relationship among multiple text frames is described by features cascading. Finally, the relevance vector is learned and a two-class classifier is constructed. Experiments show that the performance of the proposed method is better than the existing four approaches, and supports vector machine-based algorithm.

Key words: corner, relevance vector machine, sparse optical flow, moving caption, context feature

中图分类号: