北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2012, Vol. 35 ›› Issue (6): 1-5.doi: 10.13190/jbupt.201206.1.liuj

• 论文 •    下一篇

一种基于迁移学习的文本—图像特征映射算法

刘杰,杜军平   

  1. 1.北京邮电大学 智能通信软件与多媒体北京市重点实验室, 北京 100876; 2.北京邮电大学 计算机学院, 北京 100876
  • 收稿日期:2012-01-12 修回日期:2012-06-15 出版日期:2012-12-28 发布日期:2013-01-07
  • 通讯作者: 杜军平 E-mail:junpingdu@126.com
  • 作者简介:刘杰(1984-),男,博士生,Email:liujie.bupt@gmail.com 杜军平(1963-),女,教授,博士生导师
  • 基金资助:

    国家重点基础研究发展计划项目(2012CB821200,2012CB821206);国家自然科学基金项目(91024001;61070142);北京市自然科学基金项目(4111002)

A Transfer Learning Based Text-Image Feature Mapping Algorithm

Jie Liu,   

  1. 1.Beijing Key Laboratory of Intelligent Telecommunication Software and Multimedia, Beijing University of Posts and Telecommunications, Beijing 100876, China; 2.School of Computer, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2012-01-12 Revised:2012-06-15 Online:2012-12-28 Published:2013-01-07

摘要:

提出一种事件约束下基于迁移学习的文本—图像特征映射算法. 通过潜在狄利克莱分配方法对事件文本数据进行主题建模,并通过计算主题特征的信息增益选出最显著的文本特征;用视觉词袋模型和朴素贝叶斯方法对事件图片进行主题建模;通过同事件下的文本数据特征分布和文本—图像共现数据特征分布,实现了对图像特征分布的近似. 在包含15个主题事件的数据集上进行实验的结果证明了所提特征映射算法的有效性.

关键词: 事件约束, 迁移学习, 文本—图像特征映射, 共现数

Abstract:

A transfer learning based text-image feature mapping algorithm under event constraint is proposed. Firstly, the documents of each event are modeled by the latent dirichlet allocation, in which the most discriminating feature is obtained by computing the information gain of each topic. Secondly, the images of the corresponding event are modeled through the bag-of-visual-word model and the nave bayes approach. Finally, the feature distributions of the target images are approximated by utilizing the feature distributions of the text data and the text-image co-occurrence data within the same event. Experiment is conducted on a dataset containing 15 categories of events. The effectiveness of the proposed feature mapping algorithm is shown.

Key words: event constraint, transfer learning, text-image feature mapping, co-occurrence data

中图分类号: