北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2012, Vol. 35 ›› Issue (6): 30-33.doi: 10.13190/jbupt.201206.30.liuk

• 论文 • 上一篇    下一篇

新的相互正交二元零相关区序列集构造法

刘凯1,俞赛2,李玉博2,许成谦2   

  1. 燕山大学 信息科学与工程学院, 河北 秦皇岛 066004
  • 收稿日期:2012-01-12 修回日期:2012-03-28 出版日期:2012-12-28 发布日期:2013-01-07
  • 通讯作者: 俞赛 E-mail:yusai87@163.com
  • 作者简介:刘凯(1977-),女,副教授,硕士生导师 俞赛(1987-),女,硕士生,E-mail:yusai87@163.com
  • 基金资助:

    国家自然科学基金项目(61201263,61172094);河北省教育厅资助科研项目(F2012203171)

New Construction of Mutually Orthogonal Binary Sequence Sets with Zero Correlation Zone

LIU Kai, YU Sai, LI Yu-bo, XU Cheng-qian   

  1. College of Information Science and Engineering, Yanshan University, Hebei Qinhuangdao 066004, China
  • Received:2012-01-12 Revised:2012-03-28 Online:2012-12-28 Published:2013-01-07
  • Supported by:

    National Natural Science Foundation of China

摘要:

提出了一种基于任意相同阶的Hadamard矩阵,交织递归构造相互正交二元零相关区序列集的新方法,构造的序列集能达到二元零相关区序列集的理论界.利用参数矩阵对Hadamard序列进行加权,经交织递归构造出零相关区序列集,集合内序列数量是Hadamard矩阵阶数的2倍,且序列集间满足相互正交关系.构造结果表明,参数矩阵取值的多样性可提高相互正交零相关区序列集的数量,能获得大量新的相互正交二元零相关区序列集,为准同步码分多址系统提供更多便于硬件实施的二元地址码集.

关键词: Hadamard矩阵, 零相关区, 交织递归, 相互正交, 参数矩阵

Abstract:

Based on a pair of Hadamard matrices of the same size, a new construction of mutually orthogonal binary sequence sets with zero correlation zone (ZCZ) is presented by interleaving recursion. The sequence sets proposed can achieve theoretical bound of binary ZCZ sequence sets. By interleaving recursion, ZCZ sequence sets can be constructed from Hadamard sequences weighted by the coefficient matrices, satisfying mutually orthogonality, in which the number of sequences doubles the size of Hadamard matrix. The construction results illustrate that the proposed method improves the number of mutually orthogonal binary sequence sets with ZCZ and obtains more new sequence sets, which are used in quasi-synchronous code division multiple access system and implemented conveniently in hardware, by means of different choices of the coefficient matrices.

Key words: Hadamard matrices, zero correlation zone, interleaving recursion, mutually orthogonal, coefficient matrices

中图分类号: