北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2008, Vol. 31 ›› Issue (6): 67-70.doi: 10.13190/jbupt.200806.67.199

• 研究报告 • 上一篇    下一篇

自适应遗传算法在多边多议题协商中的应用

李 剑1,2, 景 博2, 杨义先1   

  1. (1. 北京邮电大学 灾备技术国家工程实验室, 北京 100876; 2. 北京理工大学 软件学院, 北京 100081)
  • 收稿日期:2008-06-16 修回日期:2008-09-28 出版日期:2008-12-31 发布日期:2008-12-31
  • 通讯作者: 李剑

Adaptive Genetic Algorithm and Its Application in Multi-lateral Multi-issue Negotiation

LI Jian1,2, JING Bo2, YANG Yi-xian1   

  1. (1. National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876, China; 2. School of Software, Beijing Institute of Technology, Beijing 100876, China)
  • Received:2008-06-16 Revised:2008-09-28 Online:2008-12-31 Published:2008-12-31
  • Contact: LI Jian

摘要:

为了使基于智能体电子商务中协商智能体最大限度地达到协商的最优解,并且提高协商的效率,提出将自适应遗传算法AGA应用于基于智能体电子商务的多边多议题同时出价的协商中. 经过1000次实验,标准遗传算法SGA平均需要210次才能达到协商的最优解,而AGA平均仅需要187次. 这表明,在基于智能体的电子商务中,自适应遗传算法可以使多边多议题协商中的智能体高效达到协商的最优解.

关键词: 电子商务, 多边多议题协商, 自适应遗传算法

Abstract:

To make the negotiation agents gain optimal result and more efficiently to negotiate in multi-agent based e-commerce, an adaptive genetic algorithm is presented and applied in multi-lateral multi-issue simultaneous bidding negotiations. 1000 times of experiments show that, for satisfying results, the adaptive genetic algorithm averagely needs 210 times run with contrast to 187 times run of the standard genetic algorithm. So it also shows that the adaptive genetic algorithm can gain the optimal negotiation result more efficiently in multi-literal multi-issue negotiation.

Key words: e-commerce, multi-literal multi-issue negotiation, adaptive genetic algorithm.

中图分类号: