北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2006, Vol. 29 ›› Issue (3): 110-113.doi: 10.13190/jbupt.200603.110.016

• 研究报告 • 上一篇    下一篇

关于GF(q)上的完全非线性函数和广义Bent函数

柯品惠1,2, 常祖领3,4 ,温巧燕1   

  1. 1.北京邮电大学理学院, 北京,100876; 2. 福建师范大学数学与计算机科学学院,福建,350007;
    3.郑州大学数学系,河南,4500253; 4. 中国科学院信息安全中心国家重点实验室,北京 100039
  • 收稿日期:2005-01-01 修回日期:1900-01-01 出版日期:2006-06-30 发布日期:2006-06-30
  • 通讯作者: 柯品惠

On Perfect Nonlinear Function and Generalized
Bent function Over

KE Pin-hui 1,2, CHANG Zu-ling 3,4 , WEN Qiao-yan 1   

  1. 1. School of Sciences, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. School of Mathematics and Computer Science, Fujian Normal University, Fujian,350007,China;
    3. Department of Mathematics, Zhengzhou University, Henan, 450025,China;
    4. State Key Laboratory of Information Security, Chinese Academy of Sciences, Beijing, 100039,China
  • Received:2005-01-01 Revised:1900-01-01 Online:2006-06-30 Published:2006-06-30
  • Contact: KE Pin-hui

摘要:

给出了一般有限域上广义bent函数一个较弱的定义,并考虑了它和完全非线性函数的关系.证明了 元 值逻辑函数 是 上的完全非线性函数当且仅当对任意的 , 是 上的广义bent函数,同时说明了已有的及本文提出的广义bent函数定义的异同点,并给出一个是广义bent函数但不是完全非线性函数的例子.结果表明在我们的定义下,一般有限域和剩余类环上的完全非线性函数和广义bent函数的研究是一致的.其次建立了 和它的分量函数的谱值的对应关系,进而证明了 是 上的完全非线性函数当且仅当它的分量函数 是 维向量广义bent函数.

关键词: 有限域, 逻辑函数, 广义bent函数, 完全非线性函数

Abstract:

A weak definition of generalized bent function over finite fields is presented. And then the relation between Perfect nonlinear functions and generalized bent functions is studied. We prove that a q-ary logic function over ( )is a perfect nonlinear function iff is a generalized bent function for each non-zero element in . The difference between several versions of generalized bent function’s definitions over finite fields is discussed. Relations between spectrum of and that of its component functions are also presented. Furthermore we prove that is nonlinear perfect function over iff its component function is - dimension vector generalized bent function.

Key words: finite fields, logical function, generalized bent function, perfect nonlinear function

中图分类号: