北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2006, Vol. 29 ›› Issue (2): 123-126.doi: 10.13190/jbupt.200602.123.caojr

• 研究报告 • 上一篇    下一篇

基于支持向量机的视频关键帧语义提取

曹建荣,蔡安妮   

  1. 北京邮电大学 电信工程学院
  • 出版日期:2006-04-28 发布日期:2006-04-28

Semantic Extraction of Video Keyframe Using Support Vector Machines

CAO Jian-rong, CAI An-ni   

  1. School of Telecommunication Engineering, Beijing University of Posts and Telecommunications
  • Online:2006-04-28 Published:2006-04-28

摘要: 针对如何从视频关键帧中提取语义的问题,提出了一个使用多类支持向量机(SVM)对风光纪录片的关键帧进行分类来提取语义的方法. 支持向量机利用从风光纪录片的关键帧中提取的彩色直方图和MPEG(活动图像专家组)7的边缘直方图特征对关键帧图像进行分类,从而得到关键帧的语义. 对具有不同核函数的支持向量机的分类进行了研究,并对分类的结果进行了对比. 结果显示,具有二项式(Polynomial)和RBF(radial basis function)核函数的SVM,其分类准确度比其他的SVM约高3%.

Abstract: A multi-class support vector machine (SVM) is used to classify the video key frames of scenery documentary. The color histogram features and MPEG (Moring Picture Expert Group)-7 edge histogram features from the video key frames of scenery documentary are combined to classify the key frame in SVM in order to obtain the semantics of the key frames. The performances of SVMs with difference kernel functions have been tested and compared. The precision of classification of SVM with polynormal and radial basis function will be about 3% higher than that of other kernel function.

Key words: support vector machine, key frames, semantic, video