[1] 赵建龙, 曲桦, 赵季红, 等. 基于Morlet-SVR和ARIMA组合模型的网络流量预测[J]. 北京邮电大学学报, 2016, 39(2):53-57. Zhao Jianlong, Qu Hua, Zhao Jihong, et al. A comprehensive forecasting model for network traffic based on Morlet-SVR and ARIMA[J]. Journal of Beijing University of Posts and Telecommunications, 2016, 39(2):53-57.
[2] 段华琼, 唐宾徽. 基于线性多尺度模型的计算机网络数据流量预测[J]. 沈阳工业大学学报, 2017, 39(3):322-327. Duan Huaqiong, Tang Binhui. Prediction of data flow in computer network based on linear multi-scale model[J]. Journal of Shenyang University of Technology, 2017, 39(3):322-327.
[3] Tian Zhongda, Li Shujiang, Wang Yanhong, et al. A network traffic hybrid prediction model optimized by improved harmony search algorithm[J]. Neural Network World, 2015, 25(6):669-686.
[4] Qu Hua, Ma Wentao, Zhao Jihong, et al. Prediction method for network traffic based on maximum correntropy criterion[J]. China Communications, 2013, 10(1):134-145.
[5] Laner M, Svoboda P, Rupp M. Parsimonious fitting of long-range dependent network traffic using ARMA models[J]. IEEE Communications Letters, 2013, 17(12):2368-2371.
[6] Yadav R K, Balakrishnan M. Comparative evaluation of ARIMA and ANFIS for modeling of wireless network traffic time series[J]. EURASIP Journal on Wireless Communications and Networking, 2014, 2014(1):15.
[7] Wang Jin. A process level network traffic prediction algorithm based on ARIMA model in smart substation[C]//2013 IEEE International Conference on Signal Processing, Communication and Computing. Kunming:IEEE Press, 2013:1-5.
[8] Ren Xunyi, Yang Yu, Zhang Junfeng, et al. Parameter estimation and application of time-varying FARIMA model[J]. International Journal of Advancements in Computing Technology, 2011, 3(3):89-94.
[9] Katris C, Daskalaki S. Comparing forecasting approaches for Internet traffic[J]. Expert Systems with Applications, 2015, 42(21):8172-8183.
[10] 姜明, 吴春明, 张旻, 等. 网络流量预测中的时间序列模型比较研究[J]. 电子学报, 2009, 37(11):2353-2358. Jiang Ming, Wu Chunming, Zhang Min, et al. Research on the comparison of time series models for network traffic prediction[J]. Acta Electronica Sinica, 2009, 37(11):2353-2358.
[11] 马静, 沈来信, 盛文婷. 在线开放通信网络信道分配算法优化[J]. 沈阳工业大学学报, 2017, 39(2):193-197. Ma Jing, Shen Laixin, Sheng Wenting. Optimization for online open communication network channel allocation algorithm[J]. Journal of Shenyang University of Technology, 2017, 39(2):193-197.
[12] Liang Yonglin, Qiu Lirong. Network traffic prediction based on SVR improved by chaos theory and ant colony optimization[J]. International Journal of Future Generation Communication and Networking, 2015, 8(1):69-78.
[13] Liu Xingwei, Li Hua, Chen Lei, et al. An improved forecasting algorithm for wireless network traffic[J]. IEICE Electronics Express, 2011, 8(12):916-922.
[14] Tian Zhongda, Li Shujiang. A network traffic prediction method based on IFS algorithm optimised LSSVM[J]. International Journal of Engineering Systems Modelling and Simulation, 2017, 19(4):200-213.
[15] 田中大, 高宪文, 石彤. 用于混沌时间序列预测的组合核函数最小二乘支持向量机[J]. 物理学报, 2014, 63(16):160508. Tian Zhongda, Gao Xianwen, Shi Tong. Combination kernel function least squares support vector machine for chaotic time series prediction[J]. Acta Physica Sinica, 2014, 63(16):160508.
[16] 田中大, 高宪文, 李树江, 等. 遗传算法优化回声状态网络的网络流量预测[J]. 计算机研究与发展, 2015, 52(5):1137-1145. Tian Zhongda, Gao Xianwen, Li Shujiang, et al. Prediction method for network traffic based on genetic algorithm optimized echo state network[J]. Journal of Computer Research and Development, 2015, 52(5):1137-1145.
[17] Wang Junsong, Wang Jiukun, Zeng Maohua, et al. Prediction of Internet traffic based on Elman neural network[C]//2009 Chinese Control and Decision Conference. Guilin:IEEE Press, 2009:1248-1252.
[18] Qian Feng. A extreme learning machines approach for accurate estimation of large-scale IP network traffic matrix[J]. Journal of Computational Information Systems, 2012, 8(2):755-762.
[19] Cao Jianhua, Liu Yuan, Dai Yue. Network traffic prediction based on error advanced DGM(1, 1) model[C]//International Conference on Wireless Communication Networking and Mobile Computing. Shanghai:IEEE Press, 2007:6353-6356.
[20] 何志昆, 刘光斌, 赵曦晶, 等. 高斯过程回归方法综述[J]. 控制与决策, 2013, 28(8):1121-1129. He Zhikun, Liu Guangbin, Zhao Xijing, et al. Overview of Gaussian process regression[J]. Control and Decision, 2013, 28(8):1121-1129.
[21] Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization:artificial bee colony (ABC) algorithm[J]. Journal of Global Optimization, 2007, 39(3):459-471.
[22] Karaboga D, Gorkemli B, Ozturk C, et al. A comprehensive survey:artificial bee colony (ABC) algorithm and applications[J]. Artificial Intelligence Review, 2014, 42(1):21-57. |