[1] LI X H, LIU X P, WANG G, et al. An adaptive hybrid filter attitude algorithm[J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(3):79-86. 黎星华, 刘晓平, 王刚, 等. 一种自适应混合滤波姿态解算算法[J]. 北京邮电大学学报, 2021, 44(3):79-86. [2] YUAN J, JIANG Z Y, SHI L F. Hybrid noise filtering algorithm based on nonlocal self similarity[J]. Optical Technology, 2020, 263(3):108-114. 袁健, 姜振宇, 石凌峰. 基于非局部自相似性的混合噪声滤波算法[J]. 光学技术, 2020, 263(3):108-114. [3] WU Q S, LI Y S, JIANG Z X, et al. A novel hybrid kernel adapive filtering algorithm for nonlinear channel equalization[J]. IEEE Access, 2019, 1:1-8. [4] JUNIOR V, TCHEOU M P, DIAS M, et al. Constrained least mean square algorithm with coefficient reusing[J]. Circuits, Systems, and Signal Processing, 2021, 40(11):5705-5717. [5] ZENG J J, LIN Y, SHI L M. A normalized least mean square algorithm based on the arctangent cost function robust against impulsive interference[J]. Circuits Systems and Signal Processing, 2016, 35(8):3040-3047. [6] ZAKHAROV Y V. Low-complexity implementation of the affine projection algorithm[J]. IEEE Signal Processing Letters, 2008, 15(1):557-560. [7] BAN S J, KIM S W. Pseudo affine projection sign algorithm for robust system identification[J]. Electronics Letters, 2010, 46(12):865-866. [8] ZHENG Z, ZHAO H. Memory improved proportionate M-estimate affine projection algorithm[J]. Electronics Letters, 2015, 51(6):525-526. [9] SHAO T, ZHENG Y R, MEMBER S, et al. An affine projection sign algorithm robust against impulsive interfe-rences[J]. IEEE Signal Processing Letters, 2010, 17(4):327-330. [10] SHIN J. Variable step-size affine projection sign algorithm[J]. Electronics Letters, 2012, 48(9):483-485. [11] ARENAS-GARCIA J, FIGUEIRAS-VIDAL A R, SAYED A H. Steady state performance of convex combinations of adaptive filters[C]//Acoustics, Speech, and Signal Processing. Philadelphia:IEEE Press, 2005(4):33-36. [12] GUO Y, HOU M Y. Sparse adaptive filtering algorithm based on exponential gradient and convex combination[J]. Journal of Instrumentation, 2014, 1(4):894-900. 郭莹, 侯明云. 基于指数梯度和凸组合的稀疏自适应滤波算法[J]. 仪器仪表学报, 2014, 1(4):894-900. [13] SHI L M, XIE X Z, LIN Y. Combination of affine projection sign algorithms for robust adaptive filtering in non-Gaussian impulsive interference[J]. Electronics Letters, 2014, 50(6):466-467. [14] ZENG L Y, XU H, WANG T R. Improved convex combination least mean square algorithm[J]. Journal of Beijing University of Posts and Telecommunications, 2016, 39(4):114-117. 曾乐雅, 许华, 王天睿. 改进的凸组合最小均方算法[J]. 北京邮电大学学报, 2016, 39(4):114-117. [15] WU S, ZHOU Z H, LI Y L. Fast convex combination least mean square algorithm based on a new S-type function[J]. Science, Technology and Engineering, 2017, 17(31):289-293. 伍松, 周振华, 李俞霖. 基于一种新的S型函数快速凸组合最小均方算法[J]. 科学技术与工程, 2017, 17(31):289-293. [16] NASCIMENTO V H, LAMARE R. A low-complexity strategy for speeding up the convergence of convex combinations of adaptive filters[C]//Acoustics, Speech and Signal Processing. Kyoto:IEEE Press, 2012(4):3553-3556. [17] ARENAS-GARCIA J, GOMEZ-VERDEJO V, FIGUEIRAS-VIDAL A R. New algorithms for improved adaptive convex combination of LMS transversal filters[J]. IEEE Transactions on Instrumentation & Measurement, 2005, 54(6):2239-2249. |