[1] 张新勋, 周生华, 刘宏伟.目标极化散射特性对极化分集雷达检测性能的影响[J].雷达学报, 2019, 8(4):510-518.Zhang Xinxun, Zhou Shenghua, Liu Hongwei.Influence of target polarization scattering characteristics on the detection performance of polarization diversity radar[J].Journal of Radars, 2019, 8(4):510-518. [2] 杨洋, 刘元安, 吴帆.一种非对称馈电的小型化高隔离度分集天线[J].北京邮电大学学报, 2019, 42(3):51-57.Yang Yang, Liu Yuan'an, Wu Fan.An asymmetric feed compact high isolation diversity antenna[J].Journal of Beijing University of Posts and Telecommunications, 2019, 42(3):51-57. [3] 翟计全, 马林, 杨文军.全极化雷达极化标校技术研究[J].电波科学学报, 2019, 34(6):806-813.Zhai Jiquan, Ma Lin, Yang Wenjun.Polarization calibration technique of fully polarimetric radar[J].Chinese Journal of Radio Science, 2019, 34(6):806-813. [4] Liu Xiaoming, Qi Tao, Wang Chen, et al.A broadband ultra-thin polarization rotator using periodically loaded parallel strip-lines[J].IEEE Access, 2021, 9:25450-25457. [5] Erickson N R, Grosslein R M.A low-loss 74-110 GHz faraday polarization rotator[J].IEEE Transactions on Microwave Theory and Techniques, 2007, 55(12):2495-2501. [6] Goldsmith P F.Quasioptical systems:Gaussian beam quasioptical propagation and applications[M].New York:IEEE Press, 1998. [7] 韩晓晓, 童元伟.基于π型结构双折射超表面的设计与应用[J].激光技术, 2020, 44(1):42-49.Han Xiaoxiao, Tong Yuanwei.Design and application of birefringent metasurface based on π-shape structure[J].Laser Technology, 2020, 44(1):42-49. [8] Liu Xiaoming, Cao Xiaohang, Yu Junsheng, et al.Polarization rotator of arbitrary angle based on simple slot-array[J].AIP Advances, 2015, 5(12):127142. [9] Varikuntla K K, Singaravelu R.Ultrathin design and implementation of planar and conformal polarisation rotating frequency selective surface based on SIW technology[J].IET Microwaves, Antennas & Propagation, 2018, 12(12):1939-1947. [10] Arnieri E, Greco F, Boccia L, et al.A SIW-based polarization rotator with an application to linear-to-circular dual-band polarizers at K-/Ka-band[J].IEEE Transactions on Antennas and Propagation, 2020, 68(5):3730-3738. [11] Garcia-Marin E, Masa-Campos J L, Sanchez-Olivares P, et al.Bow-Tie-shaped radiating element for single and dual circular polarization[J].IEEE Transactions on Antennas and Propagation, 2020, 68(2):754-764. [12] Mollaei M S M.Narrowband configurable polarization rotator using frequency selective surface based on circular substrate-integrated waveguide cavity[J].IEEE Antennas and Wireless Propagation Letters, 2017, 16:1923-1926. [13] Zhao Jingcheng, Cheng Yongzhi.A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial[J].Applied Physics B, 2016, 122(10):1-7. [14] Khan M I, Tahir F A.An angularly stable dual-broadband anisotropic cross polarization conversion metasurface[J].Journal of Applied Physics, 2017, 122(5):053103. [15] Khan M I, Fraz Q, Tahir F A.Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle[J].Journal of Applied Physics, 2017, 121(4):045103. [16] Meraj-E-Mustafa, Izhar R, Wahidi M S, et al.A broadband polarization rotator metasurface[C]//2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT).Guangzhou:IEEE Press, 2019:1-2. [17] Ghosh S, Saikia M, Srivastava K V.Switchable reflective metamaterial polarisation rotator[J].Electronics Letters, 2016, 52(12):1030-1032. [18] Zhang Linbo, Zhou Peiheng, Lu Haipeng, et al.Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances[J].IEEE Antennas and Wireless Propagation Letters, 2015, 14:1157-1160. [19] Zheng Qi, Guo Chenjiang, Vandenbosch G A E, et al.Ultra-broadband and high-efficiency reflective polarization rotator based on fractal metasurface with multiple plasmon resonances[J].Optics Communications, 2019, 449:73-78. [20] Cerveny M, Ford K L, Tennant A.Reflective switchable polarization rotator based on metasurface with PIN diodes[J].IEEE Transactions on Antennas and Propagation, 2021, 69(3):1483-1492. [21] Zhang Zongtang, Luyen H, Booske J H, et al.A dual-band, polarization-rotating reflectarray with independent phase control at each band[J].IEEE Transactions on Antennas and Propagation, 2021, 69(9):5546-5558. [22] Pozar D M.Microwave engineering, third edition, Chapter 3[M].New York:John Wiley, 2005. [23] Munk B A.Frequency selective surfaces, chapter 2[M].Hoboken:John Wiley & Sons, Inc, 2000:26-62. |