[1] 王静远, 李超, 熊璋, 等. 以数据为中心的智慧城市研究综述[J]. 计算机研究与发展, 2014, 51(2):239-259. Wang Jingyuan, Li Chao, Xiong Zhang, et al. Survey of data centric smart city[J]. Journal of Computer Research and Development, 2014, 51(2):239-259. [2] Lim M, Lee D, Hosung P, et al. Convolutional neural network based on audio event classification[J]. KSII Transactions on Internet and Information Systems, 2018, 12:2748-2759. [3] Zhang Xiaohu, Zou Yuexian, Shi Wei. Dilated convolution neural network with leaky ReLU for environmental sound classification acoustics[C]//22nd International Conference on Digital Signal Processing. Washington:IEEE Press, 2017:123-132. [4] 蔡尚, 金鑫, 高盛翔, 等. 用于噪音鲁棒性语音识别的子带能量规整感知线性预测系数[J]. 声学学报, 2012, 37(6):667-672. Cai Shang, Jin Xin, Gao Shengxiang, et al. Sub-band power normalized perceptual linear predictive coefficient for robust automatic speech recognition[J]. ACTA Acustica, 2012, 37(6):667-672. [5] Yu Tsao, Lin Tzu-Hao, Chen Fei, et al. Robust S1 and S2 heart sound recognition based on spectral restoration and multi-style training[J]. Biomedical Signal Processing and Control, 2019, 49:173-180. [6] Ilyas O, Zeynep O, Oghuz F. Noise robust sound event classification with convolutional neural network[J]. Neurocomputing, 2018, 272:505-512. [7] 易江燕, 陶建华, 刘斌, 等. 基于迁移学习的噪音鲁棒语音识别声学建模[J]. 清华大学学报, 2018, 58(1):55-60. Yi Jiangyan, Tao Jianhua, Liu Bin et al. Transfer learning for acoustic modeling of noise robust speech recognition[J]. Journal of Tsinghua University, 2018, 58(1):55-60. [8] 仇景明, 曲桦, 赵季红. 一种鲁棒网络流量分类及新类型发现算法[J]. 北京邮电大学学报, 2020, 43(2):40-45. Qiu Jingming, Qu Hua, Zhao Jihong. A robust network traffic classification and new type discovery algorithm[J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(2):40-45. [9] Johnson H.Noise data[EB/OL].United Kingdom Signal Processing Information Base, 1990[2020-08-16].http://spib.linse.ufsc.br/noise.html. [10] Wang Dong,Wu Dalei,Zhu Xiaoyan.THCHS-30:a free Chinese speech corpus[EB/OL].Beijing:Tsinghua University,2015(2015-12-10)[2020-08-16]. http://arxiv.org/abs/1512.01882.2015. [11] Sumithra M, Prakash D, Yuan X. Adaptive wavelet shrinkage for noise robust speaker recognition[J]. Digital Signal Processing, 2014, 33:180-190. [12] 王雷, 王智广. 考虑多种特征因素的设计模式自动识别[J]. 北京邮电大学学报, 2017, 40(5):36-42. Wang Lei, Wang Zhiguang. Automatic design pattern detection on the consideration of multiple characteristic factors[J]. Journal of Beijing University of Posts and Telecommunications, 2017, 40(5):36-42. [13] 曹毅, 黄子龙, 张威, 等. N-DenseNet的城市声音事件分类模型[J]. 西安电子科技大学学报, 2019, 46(6):9-16, 94. Cao Yi, Huang Zilong, Zhang Wei, et al. Urban sound event classification with n-order dense convolutional network[J]. Journal of Xidian University, 2019, 46(6):9-16, 94. [14] Huang Gao, Liu Zhuang, Weinberger K Q. Densely connected convolutional networks[C]//30th IEEE Conference on Computer Vision and Pattern Recognition CVPR 2017. Honolulu:IEEE press, 2017:2261-2269. [15] Huang Zilong, Liu Chen, Fei Hongbo, et al. Urban sound classification based on 2-order dense convolutional network using dual features[J/OL]. Applied Acoustics, 2020, 164[2020-08-16]. https://doi.org/10.1016/j.apacoust.2020.107243. [16] Mesaros A, Heittola T, Virtanen T. TUT database for acoustic scene classification and sound event detection[C]//24th European Signal Processing Conference. Budapest:IEEE Press, 2016:3-9. |