Journal of Beijing University of Posts and Telecommunications ›› 2020, Vol. 43 ›› Issue (1): 122-128.doi: 10.13190/j.jbupt.2019-020
• Reports • Previous Articles Next Articles
Social Network User Identity Association and Its Analysis
SUN Bo, ZHANG Wei, SI Cheng-xiang
- National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing 100029, China
-
Received:
2019-01-30Online:
2020-02-28Published:
2020-03-27 -
Supported by:
CLC Number:
Cite this article
SUN Bo, ZHANG Wei, SI Cheng-xiang. Social Network User Identity Association and Its Analysis[J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(1): 122-128.
share this article
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.bupt.edu.cn/EN/10.13190/j.jbupt.2019-020
[1] Zhou X, Liang X, Zhang H, et al. Cross-platform identification of anonymous identical users in multiple social media networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(2):411-424. [2] Liu S, Wang S, Zhu F. Structured learning from heterogeneous behavior for social identity linkage[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(7):2005-2019. [3] Liu S, Wang S, Zhu F, et al. Hydra:large-scale social identity linkage via heterogeneous behavior modeling[C]//Proceedings of the 2014 ACM SIGMOD international conference on Management of Data. Snowbird:ACM Press, 2014:51-62. [4] Zafarani R, Liu H. Connecting users across social media sites:a behavioral-modeling approach[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Chicago:ACM Press, 2013:41-49. [5] Zhang Y, Tang J, Yang Z, et al. Cosnet:connecting heterogeneous social networks with local and global consistency[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Sydney:ACM Press, 2015:1485-1494. [6] Korula N, Lattanzi S. An efficient reconciliation algorithm for social networks[J]. Proceedings of the VLDB Endowment, 2014, 7(5):377-388. [7] Lu C T, Shuai H H, Yu P S. Identifying your customers in social networks[C]//Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. Shanghai:ACM Press, 2014:391-400. [8] Kong X, Zhang J, Yu P S. Inferring anchor links across multiple heterogeneous social networks[C]//Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. San Francisco:ACM Press, 2013:179-188. [9] Goga O, Lei H, Parthasarathi S H K, et al. Exploiting innocuous activity for correlating users across sites[C]//Proceedings of the 22nd International Conference on World Wide Web. Rio de Janeiro:ACM Press, 2013:447-458. [10] 叶娜, 赵银亮, 边根庆, 等. 模式无关的社交网络用户识别算法[J]. 西安交通大学学报, 2013, 47(12):19-25. Ye N, Zhao Y L, Bian G Q, et al. A schema-independent user identification algorithm in social networks[J]. Journal of Xi'an Jiaotong University, 2013, 47(12):19-25. [11] 徐钦. 基于遗传算法的复杂网络节点匹配问题[J]. 黑龙江科技学院学报, 2011, 21(3):244-248. Xu Q. Node matching between complex networks based on genetic algorithm[J]. Journal of Heilongjiang Institute of Science and Technology, 2011, 21(3):244-248. [12] 周小平, 梁循, 赵吉超, 等. 面向社会网络融合的关联用户挖掘方法综述[J]. 软件学报, 2017, 28(6):1565-1583. Zhou X P, Liang X, Zhao J C, et al. Correlating user mining methods for social network integration:a survey[J]. Journal of Software, 2017, 28(6):1565-1583. [13] 李晓菲, 梁循, 周小平, 等. 一种跨平台微博社区账户匹配方法[P]. 北京:CN104765729A, 2015-07-08. [14] De Meo P, Ferrara E, Fiumara G, et al. On facebook, most ties are weak[J]. Communications of the ACM, 2014, 57(11):78-84. [15] Cheng Z, Caverlee J, Lee K, et al. Exploring millions of footprints in location sharing services[J]. ICWSM, 2011, 2011:81-88. [16] Zhang Y, Zhang M, Liu Y, et al. Localized matrix factorization for recommendation based on matrix block diagonal forms[C]//Proceedings of the 22nd International Conference on World Wide Web. Rio de Janeiro:ACM Press, 2013:1511-1520. [17] Zhang Y, Zhang M, Zhang Y, et al. Daily-aware personalized recommendation based on feature-level time series analysis[C]//Proceedings of the 24th International Conference on World Wide Web. Florence:ACM Press, 2015:1373-1383. [18] ERDdS P, R&WI A. On random graphs I[J]. Publ Math Debrecen, 1959, 6:290-297. [19] Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684):440-442. [20] Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509-512. [21] Chakrabarti D, Zhan Y, Faloutsos C. R-mat:a recursive model for graph mining[C]//Proceedings of the 2004 SIAM International Conference on Data Mining. Lake Buena Vista:Society for Industrial and Applied Mathematics Press, 2004:442-446. [22] Man T, Shen H, Liu S, et al. Predict anchor links across social networks via an embedding approach[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. New York:Morgan Kaufmann Press, 2016, 16:1823-1829. [23] Liu L, Cheung W K, Li X, et al. Aligning users across social networks using network embedding[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. New York:Morgan Kaufmann Press, 2016:1774-1780. [24] Zhou X, Liang X, Du X, et al. Structure based user identification across social networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(6):1178-1191. [25] Zhou X, Liang X, Zhao J, et al. An unsupervised user identification algorithm using network embedding and scalable nearest neighbour[J]. Cluster Computing, 2018(3):1-11. [26] Bartunov S, Korshunov A, Park S T, et al. Joint link-attribute user identity resolution in online social networks[C]//Proceedings of the 6th International Conference on Knowledge Discovery and Data Mining, Workshop on Social Network Mining and Analysis. Beijing:ACM Press, 2012:1-9. [27] Deng Z, Sang J, Xu C. Personalized video recommendation based on cross-platform user modeling[C]//2013 IEEE International Conference on Multimedia and Expo (ICME). San Jose:IEEE Press, 2013:1-6. [28] Mu X, Zhu F, Lim E P, et al. User identity linkage by latent user space modelling[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco:ACM Press, 2016:1775-1784. [29] Acquisti A, Gross R, Stutzman F. Faces of facebook:privacy in the age of augmented reality[J]. BlackHat USA, 2011(2):1-20. [30] Iofciu T, Fankhauser P, Abel F, et al. Identifying users across social tagging systems[C]//Fifth International AAAI Conference on Weblogs and Social Media. Barcelona:AAAI Press, 2011:522-525. [31] Motoyama M, Varghese G. I seek you:searching and matching individuals in social networks[C]//Proceedings of the Eleventh International Workshop on Web Information and Data Management. Hong Kong:ACM Press, 2009:67-75. [32] Zheng R, Li J, Chen H, et al. A framework for authorship identification of online messages:writing-style features and classification techniques[J]. Journal of the Association for Information Science and Technology, 2006, 57(3):378-393. [33] Al Mishari M, Tsudik G. Exploring linkability of user reviews[C]//17th European Symposium on Research in Computer Security. Pisa:Springer Press, 2012:307-324. [34] Nilizadeh S, Kapadia A, Ahn Y Y. Community-enhanced de-anonymization of online social networks[C]//Proceedings of the 2014 acm Sigsac Conference on Computer and Communications Security. Scottsdale:ACM Press, 2014:537-548. [35] Singh R, Xu J, Berger B. Global alignment of multiple protein interaction networks with application to functional orthology detection[J]. Proceedings of the National Academy of Sciences, 2008, 105(35):12763-12768. [36] Pedarsani P, Figueiredo D R, Grossglauser M. A bayesian method for matching two similar graphs without seeds[C]//2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton). Monticello:IEEE Press, 2013:1598-1607. [37] Yu M. Entity linking on graph data[C]//Proceedings of the 23rd International Conference on World Wide Web. Seoul:ACM Press, 2014:21-26. [38] 孙昊. 大数据技术下的网络舆情分析系统研究[J]. 自动化与仪器仪表, 2018(8):26-28. Sun H. Research on network public opinion analysis system based on big data technology[J]. Automation & Instrumentation, 2018(8):26-28. [39] 余辉, 黄永峰. 跨媒体多源网络舆情分析系统设计与实现[J]. 数据通信, 2014(1):39-42. Yu H, Huang Y F. Design and implementation of cross-media multi-source network public opinion analysis system[J]. Data Communications, 2014(1):39-42. [40] 孟祥武, 纪威宇, 张玉洁. 大数据环境下的推荐系统[J]. 北京邮电大学学报, 2015, 38(2):1-15. Meng X W, Ji W Y, Zhang Y J. A survey of recommendation systems in big data[J]. Journal of Beijing University of Posts and Telecommunications, 2015, 38(2):1-15. [41] Le Q V, Mikolov T. Distributed representations of sentences and documents[C]//Proceedings of the 31st International Conference on Machine Learning. Beijing:ACM Press, 2014:1188-1196. [42] Chiu J P C, Nichols E. Named entity recognition with bidirectional LSTM-CNNs[J]. Transactions of the Association for Computational Linguistics, 2016, 4:357-370. [43] Tu C, Liu Z, Sun M. Inferring correspondences from multiple sources for microblog user tags[C]//Chinese National Conference on Social Media Processing. Beijing:Springer Press, 2014:1-12. [44] Mukherjee A, Venkataraman V, Liu B, et al. What yelp fake review filter might be doing?[C]//Seventh International AAAI Conference on Weblogs and Social Media. Massachusetts:AAAI Press, 2013:409-418. [45] Li J, Ott M, Cardie C, et al. Towards a general rule for identifying deceptive opinion spam[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers). Baltimore:ACL Press, 2014, 1:1566-1576. [46] Jindal N, Liu B. Opinion spam and analysis[C]//Proceedings of the 2008 International Conference on Web Search and Data Mining. Palo Alto:ACM Press, 2008:219-230. [47] Custard M, Sumner T. Using machine learning to support quality judgments[EB/OL]. 2005[2018-12-15]. http://www.dlib.org/dlib/october05/custard/10custard.html. [48] Fogg B J, Soohoo C, Danielson D R, et al. How do users evaluate the credibility of web sites?:a study with over 2 500 participants[C]//Proceedings of the 2003 Conference on Designing for User Experiences. San Francisco:ACM Press, 2003:1-15. |
[1] | . Language Identification method based on Fusion Feature MGCC [J]. Journal of Beijing University of Posts and Telecommunications, 2023, 46(2): 116-121. |
[2] | yubin yubinshao Da-Chun ZHOU. Language Identification Based on Gammatone-Scale Power-Normalized Coefficients Spectrograms [J]. Journal of Beijing University of Posts and Telecommunications, 2023, 46(2): 122-128. |
[3] | . Joint SNR estimation and modulation recognition of MIMO-OFDM signals based on multitask learning [J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(6): 98-104. |
[4] | HUO Yuanlian, GONG Qi, QI Yongfeng, AN Yaqi. Adaptive Kernel RBFNN Based on Normalized Least Mean Square Algorithm [J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(2): 29-35. |
[5] | SHAO Yu-bin, LIU Jing, LONG Hua, LI Yi-min. Language Identification in Real Noisy Environments [J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(6): 134-140. |
[6] | WANG Chen-kui, CHEN Yue-lin, CAI Xiao-dong. Person Re-Identification Method Based on Image Style Transfer [J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(3): 67-72. |
[7] | ZHOU Kai, HUANG Sai, ZENG Yu-qi, GAO Hui, LU Hua. Communication Emitter Identification Method Based on Steady-State Cyclic Spectrum Characteristics [J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(3): 100-105. |
[8] | SHAO Yu-bin, LIU Jing, LONG Hua, DU Qing-zhi, LI Yi-min. Language Identification Based on Vocal Tract Spectrum Parameters [J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(3): 112-119. |
[9] | HUANG Xiao-ge, WANG Yong-sheng, LAI Chen-bin, CHEN Qian-bin. Trust Degree Based RSU Recognition and Resource Allocation in Vehicular Networks [J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(2): 109-115. |
[10] | LI Jun-yao, CHANG Yong-yu, ZENG Tian-yi. Channel Correlation Based LOS/NLOS Identification for 3D Massive MIMO Systems [J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(1): 1-7. |
[11] | LI Xiao-hui, DU Yang-fan, SHI Xiao-zhu, YANG Xu. NLOS Ranging Error Compensation Algorithm Based on Fuzzy Association Channel Identification [J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(1): 21-27. |
[12] | ZHANG Guo-dong, YING Huan, YANG Shou-guo, SHI Zhi-qiang, LI Ji-yuan. Automatic Identification and Cracking Method for Vulnerable Hash Functions of Embedded Firmwares [J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(1): 46-53. |
[13] | LI Peng, WANG De-yong, SHI Wen-xi, JIANG Zhi-guo. Research on Person Re-Identification Based on Deep Learning under Big Data Environment [J]. JOURNAL OF BEIJING UNIVERSITY OF POSTS AND TELECOM, 2019, 42(6): 29-34. |
[14] | WU Lin-chong, YAN Zi-xiang, XIAO Jing-hua. Parameter Identification of Chaotic Systems Based on High-Order Correlation Computations [J]. JOURNAL OF BEIJING UNIVERSITY OF POSTS AND TELECOM, 2019, 42(5): 15-21. |
[15] | WANG Shuai. An Anti-Interference Algorithm for RFID Readers Based on Power Adjustment and Random Access Joint Optimization [J]. JOURNAL OF BEIJING UNIVERSITY OF POSTS AND TELECOM, 2019, 42(4): 8-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||