[1] Yi Baiheng, Zhu Jianjun. Credit scoring with an improved fuzzy support vector machine based on grey incidence analysis[C]//IEEE International Conference on Grey Systems and Intelligent Services. New York:IEEE Press, 2015:173-178.
[2] Lahsasna A, Ainon R N, Wan T Y. Credit scoring models using soft xomputing methods:a survey[J]. The International Arab Journal of Information Technology, 2010, 7(2):115-123.
[3] Ramya R S, Kumaresan S. Analysis of feature selection techniques in credit risk assessment[C]//International Conference on Advanced Computing and Communication Systems. New York:IEEE Press, 2015:1-6.
[4] Lin C C, Chang C C, Li F C, et al. Features selection approaches combined with effective classifiers in credit scoring[C]//IEEE International Conference on Industrial Engineering and Engineering Management. New York:IEEE Press, 2011:752-757.
[5] Yao Ping. Fuzzy rough set and information entropy based feature selection for credit scoring[C]//International Conference on Fuzzy Systems and Knowledge Discovery. New York:IEEE Press, 2009:247-251.
[6] Hsieh N C. Hybrid mining approach in the design of credit scoring models[J]. Expert Systems with Applications, 2005, 28(4):655-665.
[7] 田春娜, 高新波, 李洁. 基于嵌入式Bootstrap的主动学习示例选择方法[J]. 计算机研究与发展, 2006, 43(10):1706-1712. Tian Chunna, Gao Xinbo, Li Jie. An example selection method for active learning based on embedded bootstrap algorithm[J]. Journal of Computer Research and Development, 2006, 43(10):1706-1712.
[8] 刘振兴. 主动示例选择算法及其在人脸检测中的应用[D]. 西安:西安电子科技大学, 2010.
[9] 韩光辉. 基于欧式距离的实例选择算法研究[D]. 保定:河北大学, 2011.
[10] 张宁. 基于近邻分类的实例选择算法研究[D]. 保定:河北大学, 2009.
[11] Dubois D, Prade H. Putting rough sets and fuzzy sets together[M]//SLOWINSKI R. Intelligent decision support. Berlin:Springer, 1992:203-232.
[12] Jensen R, Cornelis C. Fuzzy-rough instance selection[C]//International Conference on Fuzzy Systems. New York:IEEE Press, 2010:1-7.
[13] Jhawar A, Chan C S, Monekosso D, et al. Fuzzy-rough based decision system for gait adopting instance selection[C]//IEEE International Conference on Fuzzy Systems. New York:IEEE Press, 2016:1127-1133.
[14] Kang Xiaomeng, Liu Xiaopeng, Zhai Jjunhai, et al. Instances selection for NN with fuzzy rough technique[C]//International Conference on Machine Learning and Cybernetics. New York:IEEE Press, 2011:1097-1100.
[15] Pawlak Z. Rough sets:theoretical aspects of reasoning about data[M]. Norwell:Kluwer Academic Publishing, 1992.
[16] Jensen R, Shen Qiang. Computational intelligence and feature selection:rough and fuzzy approaches[M]. Hoboken:Wiley, 2008.
[17] Cornelis C, Jensen R, Hurtado G, et al. Attribute selection with fuzzy decision reducts[J]. Information Sciences, 2010, 180(2):209-224.
[18] Frank A, Asuncion A. UCI machine learning repository[EB/OL]. (2010-09-16). http://archive.ics.uci.edu/ml.
[19] Geisser S. The predictive sample reuse method with applications[J]. Journal of the American Statistical Association, 1975, 70(350):320-328.
[20] Geisser S. A predictive approach to the random effect model[J]. Biometrika, 1974, 61(1):101-107.
[21] Yao Ping. Hybrid classifier using neighborhood rough set and SVM for credit scoring[C]//International Conference on Business Intelligence and Financial Engineering. New York:IEEE Press, 2009:138-142.
[22] Rodriguez, Laio A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191):1492-1496.
[23] Parthalain N M, Jensen R. Simultaneous feature and instance selection using fuzzy-rough bireducts[C]//IEEE International Conference on Fuzzy Systems. New York:IEEE Press, 2013:1-8. |