[1] 王永, 邓江洲. 基于KL散度的用户相似性协同过滤算法[J]. 北京邮电大学学报, 2017, 40(2):110-114. Wang Yong, Deng Jiangzhou. User similarity collaborative filtering algorithm based on KL divergence[J]. Journal of Beijing University of Posts and Telecommunications, 2017, 40(2):110-114.
[2] 王晓军, 付超. 利用模糊分块改进协同过滤的扩展性和准确性[J]. 北京邮电大学学报, 2017, 40(1):74-78. Wang Xiaojun, Fu Chao. Enhancing scalability and accuracy of collaborative filtering using fuzzy blocking[J]. Journal of Beijing University of Posts and Telecommunications, 2017, 40(1):74-78.
[3] Dziugaite G K, Roy D M. Neural network matrix factorization[EB/OL]. (2015-12-10). https://arxiv.org/abs/1511.06443.
[4] He Xiangnan, Liao Lizi, Zhang Hanwang, et al. Neural collaborative filtering[C]//WWW'17 Proceedings of the 26th International Conference on World Wide Web. New York:ACM, 2017:173-182.
[5] Xu Yunhong, Zuo Xianli. A LDA model based text-mining method to recommend reviewer for proposal of research project selection[C]//International Conference on Service Systems and Service Management. New York:IEEE, 2016:1-5.
[6] Mcauley J, Leskovec J. Hidden factors and hidden topics:understanding rating dimensions with review text[C]//Proceedings of the 7th ACM Conference on Recommender System. New York:ACM, 2013:165-172.
[7] Takuma K, Yamamoto J, Kamei S, et al. A hotel recommendation system based on reviews:what do you attach importance to?[C]//International Symposium on Computing and Networking. New York:IEEE, 2016:710-712.
[8] Zhang Yongfeng, Lai Guokun, Zhang Min, et al. Explicit factor models for explainable recommendation based on phrase-level sentiment analysis[C]//Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 2014:83-92.
[9] Xu Yinqing, Lam W, Lin Tianyi. Collaborative filtering incorporating review text and co-clusters of hidden user communities and item groups[C]//Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. New York:ACM, 2014:251-260.
[10] Shen Xiaoxuan, Yi Baolin, Zhang Zhaoli, et al. Automatic recommendation technology for learning resources with convolutional neural network[C]//International Symposium on Educational Technology. New York:IEEE, 2016:30-34.
[11] Jamali M, Ester M. A matrix factorization technique with trust propagation for recommendation in social networks[C]//Proceedings of the fourth ACM conference on Recommender Systems. New York:ACM, 2010:135-142.
[12] Ma Hao, Yang Haixuan, Lyu M R, et al. SoRec:social recommendation using probabilistic matrix factorization[C]//Proceedings of the 17th ACM Conference on Information and Knowledge Management. New York:ACM, 2008:931-940.
[13] Guo Guibing, Zhang Jie, Yorke-Smith N. TrustSVD:collaborative filtering with both the explicit and implicit influence of user trust and of item ratings[C]//Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. New York:ACM, 2015:123-129.
[14] Deng Shuiguang, Huang Longtao, Xu Guandong, et al. On deep learning for trust-aware recommendations in social networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(5):1164-1177.
[15] Ma Haojie, Che Ddongsheng. An integrative social network and review content based recommender system[J]. Journal of Industrial and Intelligent Information, 2016, 4(1):69-75.
[16] 黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7):191-219. Huang Liwei, Jiang Bitao, Lu Shouye, et al. Survey on deep learning based recommender systems[J]. Chinese Journal of Computers, 2018, 41(7):191-219.
[17] Hoffman M D, blei D M, Bach B. Online learning for latent dirichlet allocation[C]//International Conference on Neural Information Processing Systems. Berlin:Springer, 2010:856-864.
[18] Clauset A, Newman M E J, Moore C. Finding community structure in very large networks[J]. Physical Review E, 2004, 70(6 Pt 2):066111. |