[1] Liu Haifeng, Hu Zheng, Mian Ahmad, et al. A new user similarity model to improve the accuracy of collaborative filtering[J]. Knowledge Based Systems, 2014, 56(11):156-166.
[2] 王永, 邓江洲, 邓永恒, 等. 基于项目概率分布的协同过滤推荐算法[J]. 现代图书情报技术, 2016, 32(6):73-79. Wang Yong, Deng Jiangzhou, Deng Yongheng, et al. A collaborative filtering recommendation algorithm based on item probability distribution[J]. New Technology of Library and Information Service, 2016, 32(6):73-79.
[3] Patra B K, Launonen R, Ollikainen V, et al. A new similarity measure using Bhattacharyya coefficient for collaborative filtering in sparse data[J]. Knowledge-Based Systems, 2015, 82(3):163-177.
[4] Kullback S, Leibler R A. On information and sufficiency[J]. The Annals of Mathematical Statistics, 1951(22):79-86.
[5] Huang Anna. Similarity measures for text document clustering[C]//the New Zealand Computer Science Research Student Conference(NZCSRSC). New Zealand:[s.n.], 2008:49-56.
[6] Zhang Jing, Peng Qinke, Sun Shiquan, et al. Collaborative filtering recommendation algorithm based on uses preference derived from item domain features[J]. Physica A, 2014, 396(2):66-76. |