[1] Dobre O A, Abdi A, Bar-Ness Y, et al. Survey of automatic modulation classification techniques: classical approaches and new trends[J]. IET Communications, 2007, 1(2): 137-156.
[2] Popescu D C, Dobre O A, Hameed F. On the likelihood-based approach to modulation classification[J]. IEEE Transactions on Wireless Communications, 2009, 8(12): 5884-5892.
[3] Xu J L, Su Wei, Zhou Meng Chu. Likelihood-ratio approaches to automatic modulation classification[J]. IEEE Transactions on System. Man and Cybernetics, 2011, 41(4): 455-469.
[4] Wu H C, Saquib M, Yun Z F. Novel automatic modulation classification using cumulant features for communications via multipath channels[J]. IEEE Trans Wireless Communications, 2008, 7(8): 3198-3105.
[5] 李鹏, 汪芙平, 王赞基. 时变多径信道中通信信号调制识别算法[J]. 清华大学学报, 2007, 47(7): 1097-1100. Li Peng, Wang Fuping, Wang Zanji. Algorithm for modulation recognition in a time-variant multipath channel environment[J]. Journal of Tsinghua University, 2007, 47(7): 1097-1100.
[6] Lesage S, Tourneret J Y, Djuric P M. Classification of digital modulations by MCMC sampling[J]. IEEE ICASSP, 2001: 2553-2556.
[7] Chib S, Greengerg E. Understanding the Metropolis-hastings algorithm[J]. American Statistician, 1995, 49(4): 327-335.
[8] Haario H, Saksman E, Tamminem J. An adaptive Metropolis algorithm[J]. Bernoulli, 2001, 7(2): 223-242. |