Journal of Beijing University of Posts and Telecommunications

  • EI核心期刊

JOURNAL OF BEIJING UNIVERSITY OF POSTS AND TELECOM ›› 2009, Vol. 32 ›› Issue (1): 5-9.doi: 10.13190/jbupt.200901.5.chenb

• Papers • Previous Articles     Next Articles

A Pipeline Leakage Diagnosis For Fusing Neural Network and Evidence Theory

CHEN Bin WAN Jiang-wen WU Yin-feng QIN Nan   

  • Received:2008-06-18 Revised:2008-07-30 Online:2009-01-28 Published:2009-01-28
  • Contact: WAN Jiang-wen

Abstract:

For reasons of low accuracy of traditional leakage, a pipeline leakage diagnosis method based on neural networks and evidence theory is presented by introducing wireless sensor networks and information fusion theory. Two sub-neural networks are established at normal node to simplify network structure. The leakage characteristic parameters of negative pressure wave and acoustic emission signals are used as input eigenvector respectively for primary diagnosis. Through making preliminary fusion results as the basic probability assignment of evidence, the impersonal valuations are realized. Finally, all evidences are aggregated at normal and sink node respectively by using the improved combination rules. The method makes full use of redundant and complementary leakage information. Numerical example shows that the proposed improves the leakage diagnosis accuracy and decreases the recognition uncertainty

Key words: leakage diagnosis, neural network, evidence theory