[1] WANG S, WANG X Y, LI B, et al. Unusual scaling laws for plasmonic nano-lasers beyond the diffraction limit[J]. Nature Communications, 2017, 8(1):1-8. [2] KOYA A N, CUNHA J, GUO T L, et al. Novel plasmonic nanocavities for optical trapping-assisted biosensing applications[J]. Advanced Optical Materials, 2020, 8(7):1901481-1901492. [3] JIANG X H, CHEN P, QIAN K Y, et al. Quantum teleportation mediated by surface plasmon polariton[J]. Scientific Reports, 2020, 10(1):1-8. [4] TIECKE T, THOMPSON J D, LEON N P, et al. Nanophotonic quantum phase switch with a single atom[J]. Nature, 2014, 508(7495):241-244. [5] WEI H, YAN X, NIU Y, et al. Plasmon-exciton interactions:spontaneous emission and strong coupling[J]. Advanced Functional Materials, 2021, 31(51):2100889-2100907. [6] DING D, PEREIRA L M, BAUTERS J F, et al. Multidimensional Purcell effect in an ytterbium-doped ring resonator[J]. Nature Photonics, 2016, 10(6):385-388. [7] GALFSKY T, SUN Z, CONSIDINE C R, et al. Broadband enhancement of spontaneous emission in two-dimensional semiconductors using photonic hyper-crystals[J]. Nano Letters, 2016, 16(8):4940-4045. [8] 周张凯,李俊韬,刘仁明,等.固态光学微腔与量子体系相互耦合的调控及其量子器件研究[J].中国基础科学, 2019, 21(6):12-20. ZHOU Z K, LI J T, LIU R M, et al. Investigations on the coupling manipulation and device application in the compound system of solid optical microcavity and quantum system[J]. China Basic Science, 2019, 21(6):12-20. [9] BAUMANN K, GUERLIN C, BRENNECKE F, et al. Dicke quantum phase transition with a superfluid gas in an optical cavity[J]. Nature, 2010, 464(7293):1301-1306. [10] MOILANEN A J, HAKALA T K, TÖRMÄ P. Active control of surface plasmon-emitter strong coupling[J]. ACS Photonics, 2018, 5(1):54-64. [11] LODAHL P, MAHMOODIAN S, STOBBE S, et al. Chiral quantum optics[J]. Nature, 2017, 541(7638):473-480. [12] ZHENG D, ZHANG S, DENG Q, et al. Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2[J]. Nano Letters, 2017, 17(6):3809-3814. [13] HUANG Y, WANG Y, LIANG K, et al. Quantum theory of nonradiative decay dependent on the coupling strength in a plexcitonic system[J]. Optical Express, 2021, 29(26):43292-43303. [14] REMPE G, WALTHER H, KLEIN N. Observation of quantum collapse and revival in a one-atom maser[J]. Physical Review Letters, 1987, 58(4):353-362. [15] REITHMAIER J P, SęK G, LÖFFLER A, et al. Strong coupling in a single quantum dot-semiconductor microcavity system[J]. Nature, 2004, 432(7014):197-200. [16] ARMANI D, KIPPENBERG T, SPILLANE S, et al. Ultra-high toroid microcavity on a chip[J]. Nature, 2003, 421(6926):925-928. [17] POCKRAND I, BRILLANTE A, MÖBIUS D. Exciton-surface plasmon coupling:an experimental investigation[J]. The Journal of Chemical Physics, 1982, 77(12):6289-6295. [18] HOBSON P A, BARNES W L, LIDZEY D, et al. Strong exciton-photon coupling in a low-Q all-metal mirror microcavity[J]. Applied Physics Letters, 2002, 81(19):3519-3521. [19] SCHWARTZ T, HUTCHISON J A, GENET C, et al. Reversible switching of ultra-strong light-molecule coupling[J]. Physical Review Letters, 2011, 106(19):196405-196409. [20] VASA P, WANG W, POMRAENKE R, et al. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates[J]. Nature Photonics, 2013, 7(2):128-132. [21] KRAVETS V G, KABASHIN A V, BARNES W L, et al. Plasmonic surface lattice resonances:a review of properties and applications[J]. Chemical Reviews, 2018, 118(12):5912-5951. [22] KRAVETS V G, KABASHIN A V, BARNES W L, et al. Plasmonic surface lattice resonances:a review of properties and applications[J]. Chemical Reviews, 2018, 118(12):5912-5951. [23] SCHLATHER A E, LARGE N, URBAN A S, et al. Near-field mediated pl-excitonic coupling and giant Rabi splitting in individual metallic dimers[J]. Nano Letters, 2013, 13(7):3281-3286. [24] LIANG K, GUO J, HUANG Y, et al. Fine-tuning of polariton energies in a tailored plasmon cavity and J-aggregates hybrid system[J]. Nanoscale, 2020, 12(45):23069-23076. [25] HENSEN M, HEILPERN T, GRAY S K, et al. Strong coupling and entanglement of quantum emitters embedded in a nanoantenna-enhanced plasmonic cavity[J]. ACS Photonics, 2018, 5(1):240-248. [26] LIANG K, GUO J, WU F, et al. Dynamic control of quantum emitters strongly coupled to the isolated plasmon cavity by the microfluidic device[J]. The Journal of Physical Chemistry C, 2021, 125(31):17303-17310. [27] FRANKS M E, MACPHERSON G R, FIGG W D. Thalidomide[J]. The Lancet, 2004, 363(9423):1802-1811. [28] SONG L, GUO Z, CHEN Y. Separation and determination of chiral composition in penicillamine tablets by capillary electrophoresis in a broad pH range[J]. Electrophoresis, 2012, 33(13):2056-2063. [29] SLOCIK J M, GOVOROV A O, NAIK R R. Plasmonic circular dichroism of peptide-functionalized gold nano-particles[J]. Nano Letters, 2011, 11(2):701-705. [30] SHEN Z, JIANG Y, WANG T, et al. Symmetry brea-king in the supramolecular gels of an achiral gelator exclusively driven by π-π stacking[J]. Journal of the American Chemical Society, 2015, 137(51):16109-16115. [31] GUAN A J, ZHANG J T, WANG L X, et al. Sponta-neous formation and reversible transformation between achiral J-and chiral H-aggregates of cyanine dye MTC[J]. RSC Advances, 2019, 9(20):11365-11368. [32] GUO J, SONG G, HUANG Y, et al. Optical chirality in a strong coupling system with surface plasmons polaritons and chiral emitters[J]. ACS Photonics, 2021, 8(3):901-906. [33] WU F, GUO J, HUANG Y, et al. Plexcitonic optical chirality:strong exciton-plasmon coupling in chiral J-aggregate-metal nanoparticle complexes[J]. ACS Nano, 2020, 15(2):2292-2300. |