[1] 林春玲, 赵延明, 牛云彤. 68例皮肤恶性肿瘤与癌前病变的临床分析[J]. 实用癌症杂志, 2017, 32(6):1031-1033. LIN C L, ZHAO Y M, NIU Y T. Clinical analysis of 68 cases of skin malignant tumor and precancerous lesion[J]. The Practical Journal of Cancer, 2017, 32(6):1031-1033. [2] 张层层, 吴娟, 徐令祥. 蕈样肉芽肿[J]. 世界最新医学信息文摘, 2015(29):75. ZHANG C C, WU J, XU L X. Granuloma fungoides[J]. World Latest Medicine Information, 2015, 15(29):75. [3] VONDERHEID E C, KADIN M E, TELANG G H. Papular mycosis fungoides:six new cases and association with chronic lymphocytic leukemia[J]. World Journal of Dermatology, 2016, 5(4):136-143. [4] SCHMITZ L, KANITAKIS J. Histological classification of cutaneous squamous cell carcinomas with different severity[J]. Journal of the European Academy of Dermatology and Venereology:JEADV, 2019, 33(Sup 8):11-15. [5] D'ACUNTO M, MARTINELLI M, MORONI D. From human mesenchymal stromal cells to osteosarcoma cells classification by deep learning[J]. Journal of Intelligent and Fuzzy Systems, 2019, 37(6):7199-7206. [6] YUAN Y Y, FAILMEZGER H, RUEDA O M, et al. Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling[J]. Science Translational Medicine, 2012, 4(157):143-157. [7] XU J, XIANG L, LIU Q S, et al. Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images[J]. IEEE Transactions on Medical Imaging, 2016, 35(1):119-130. [8] TOMCZAK A, ILIC S, MARQUARDT G, et al. Multi-task multi-domain learning for digital staining and classification of leukocytes[J]. IEEE Transactions on Medical Imaging, 2021, 40(10):2897-2910. [9] GRAHAM S, VU Q D, RAZA S E A, et al. Hover-net:simultaneous segmentation and classification of nuclei in multi-tissue histology images[J]. Medical Image Analysis, 2019, 58:101563-101566. [10] WANG P, HU X L, LI Y M, et al. Automatic cell nuclei segmentation and classification of breast cancer histopathology images[J]. Signal Processing, 2016, 122:1-13. [11] XIANG H, YAN B, CAI Q, et al. An edge detection algorithm based-on Sobel operator for images captured by binocular microscope[C]//2011 International Conference on Electrical and Control Engineering. Piscataway, NJ:IEEE Press, 2011:980-982. [12] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8):2011-2023. [13] ZHANG Y, LIU S J, LI C L, et al. Rethinking the dice loss for deep learning lesion segmentation in medical images[J]. Journal of Shanghai Jiaotong University (Science), 2021, 26(1):93-102. [14] LEI Y, TIAN S B, HE X X, et al. Ultrasound prostate segmentation based on multidirectional deeply supervised V-Net[J]. Medical Physics, 2019, 46(7):3194-3206. [15] LIN K W E, BALAMURALI B T, KOH E, et al. Singing voice separation using a deep convolutional neural network trained by ideal binary mask and cross entropy[J]. Neural Computing and Applications, 2020, 32(4):1037-1050. [16] POUDEL P, BAE S H, JANG B. Comparison of different deep learning optimizers for modeling photovoltaic power[J]. Journal of the Chosun Natural Science, 2018, 11(4):204-208. [17] LUO Y L. Multi-feature data mining for CT image recognition[J/OL]. Concurrency and Computation Practice and Experience, 2018, 32(3):e4885[2022-01-08]. https://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204113718331.html. [18] RONNEBERGER O, FISCHER P, BROX T. U-net:convolutional networks for biomedical image segmentation[M]//Lecture Notes in Computer Science. Cham:Springer International Publishing, 2015:234-241. |