[1] Zheng Jian, Xu Cencen, Zhang Ziang, et al. Electric load forecasting in smart grids using long-short-term-memory based recurrent neural network[C]//2017 51st Annual Conference on Information Sciences and Systems(CISS). Baltimore:IEEE Press, 2017:1-6. [2] Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks, 1994, 5(2):157-166. [3] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. [4] Ruder S. An overview of multi-task learning in deep neural networks[EB/OL]. (2017-06-15)[2020-10-05]. https://arxiv.org/abs/1706.05098/. [5] Thung K H, Wee C Y. A brief review on multi-task learning[J]. Multimedia Tools and Applications, 2018, 77(22):29705-29725. [6] Fiot J B, Dinuzzo F. Electricity demand forecasting by multi-task learning[J]. IEEE Transactions on Smart Grid, 2016, 9(2):544-551. [7] Kong Weicong, Dong Zhao Yang, Jia Youwei, et al. Short-term residential load forecasting based on LSTM recurrent neural network[J]. IEEE Transactions on Smart Grid, 2017, 10(1):841-851. [8] Jiao Runhai, Zhang Tianming, Jiang Yizhi, et al. Short-term non-residential load forecasting based on multiple sequences LSTM recurrent neural network[J]. IEEE Access, 2018, 6:59438-59448. [9] Schuster M, Paliwal K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11):2673-2681. [10] Zou Mingzhe, Fang Duo, Harrison G, et al. Weather based day-ahead and week-ahead load forecasting using deep recurrent neural network[C]//2019 IEEE 5th International Forum on Research and Technology for Society and Industry(RTSI). Florence:IEEE, 2019:341-346. [11] Liberatore M. UMass trace repository[EB/OL]. (2018-07-24)[2020-10-05]. http://traces.cs.umass.edu/. [12] Azad S A, Ali A B M S, Wolfs P. Identification of typical load profiles using k-means clustering algorithm[C]//Asia-Pacific World Congress on Computer Science and Engineering. Nadi:IEEE Press, 2014:1-6. [13] Syakur M A, Khotimah B K, Rochman E M S, et al. Integration k-means clustering method and elbow method for identification of the best customer profile cluster[C]//IOP Conference Series:Materials Science and Engineering. Surabaya:IOP Publishing, 2018:12-17. [14] Kingma D P, Ba J. Adam:A method for stochastic optimization[EB/OL]. (2017-01-30)[2020-10-05]. https://arxiv.org/abs/1412.6980/. [15] Lago J, De Ridder F, Vrancx P, et al. Forecasting day-ahead electricity prices in Europe:the importance of considering market integration[J]. Applied Energy, 2018, 211:890-903. [16] Diebold F X, Mariano R S. Comparing predictive accuracy[J]. Journal of Business and Economic Statistics, 2002, 20(1):134-144. |