[1] 余晓丹, 徐宪东, 陈硕翼, 等. 综合能源系统与能源互联网简述[J]. 电工技术学报, 2016, 31(1):1-13. Yu Xiaodan, Xu Xiandong, Chen Shuoyi, et al. A brief review to integrated energy system and energy Internet[J]. Transactions of China Electrotechnical Society, 2016, 31(1):1-13. [2] 贾宏杰, 王丹, 徐宪东, 等. 区域综合能源系统若干问题研究[J]. 电力系统自动化, 2015, 39(7):198-207. Jia Hongjie, Wang Dan, Xu Xiandong, et al. Research on some key problems related to integrated energy systems[J]. Automation of Electric Power Systems, 2015, 39(7):198-207. [3] 蔡伟, 杨洪, 熊飞, 等. 考虑电力通信网可靠性的业务路由优化分配方法[J]. 电网技术, 2013, 37(12):3541-3545. Cai Wei, Yang Hong, Xiong Fei, et al. An optimized service routing allocation method for electric power communication network considering reliability[J]. Power System Technology, 2013, 37(12):3541-3545. [4] 王浩, 李知航, 潘志文, 等. LTE网络中具备QoS保障的动态负载均衡算法[J]. 中国科学:信息科学, 2012, 42(6):674-686. Wang Hao, Li Zhihang, Pan Zhiwen, et al. QoS guaranteed dynamic load balancing algorithm in 3GPP LTE networks[J]. Scientia Sinica(Informationis), 2012, 42(6):674-686. [5] 高钧利. SDH光传输系统的时延测算[J]. 浙江电力, 2011, 30(4):42-45. Gao Junli. Time delay test and calculation in SDH, based optical transmission system[J]. Zhejiang Electric Power, 2011, 30(4):42-45. [6] 周泰. 图的深度优先遍历算法及运用[J]. 电脑编程技巧与维护, 2011(16):93-94. Zhou Tai. The DFS for graph and its application[J]. Computer Programming Skills & Maintenance, 2011(16):93-94. [7] 高阳, 陈世福, 陆鑫. 强化学习研究综述[J]. 自动化学报, 2004, 30(1):86-100. Gao Yang, Chen Shifu, Lu Xin. Research on reinforcement learning technology:a review[J]. Acta Automatica Sinica, 2004, 30(1):86-100. [8] Mnih V, Kavukcuoglu K, Silver D, et al. Human, level control through deep reinforcement learning[J]. Nature, 2015, 518(7540):529-533. [9] 刘建伟, 高峰, 罗雄麟. 基于值函数和策略梯度的深度强化学习综述[J]. 计算机学报, 2019, 42(06):1406-1438. Liu Jianwei, Gao Feng, Luo Xionglin. Survey of deep reinforcement learning based on value function and policy gradient[J]. Chinese Journal of Computers, 2019, 42(06):1406-1438. |