[1] 魏祥泉, 黄建明, 顾冬晴, 等. 火星车自主导航与路径规划技术研究[J]. 深空探测学报, 2016, 3(3):275-281. Wei Xiangquan, Huang Jianming, Gu Dongqing, et al. Researches on the techniques of autonomous navigationand path planning for mars rover[J]. Journal of Deep Space Exploration, 2016, 3(3):275-281.
[2] 唐志荣, 冀杰, 吴明阳, 等. 基于改进人工势场法的车辆路径规划与跟踪[J]. 西南大学学报(自然科学版), 2018, 40(6):174-182. Tang Zhirong, Ji Jie, Wu Mingyang, et al. Vehicle path planning and tracking based on and improved artificial potential field method[J]. Journal of Southwest University (Natural Science Edition), 2018, 40(6):174-182.
[3] Han Y M, Jeong J B, Kim J H. Quadtree based path planning for unmanned ground vehicle in unknown environments[C]//International Conference on Control, Automation and Systems. Washington, DC:IEEE Computer Society, 2012:992-997.
[4] You Changxi, Lu Jianbo, Filev D, et al. Advanced planning for autonomous vehicles using reinforcement learning and deep inverse reinforcement learning[J]. Robotics and Autonomous Systems, 2019(114):1-18.
[5] 高海波, 范雪兵, 邓宗全, 等. 可折展载人月球车移动性能仿真与试验分析[J]. 载人航天, 2016, 22(3):323-327. Gao Haibo, Fan Xuebing, Deng Zongquan, et al. Simulation and experiments analysis of mobility performance in deployable manned lunar vehicle[J]. Manned Spaceflight, 2016, 22(3):323-327.
[6] Peng Song, Jia Yang. Global path planning for lunar rover based on particle swarm optimization algorithm[C]//2011 IEEE 5th International Conference on Robotics, Automation and Mechatronics (RAM). Washington, DC:IEEE Computer Society, 2011:83-88.
[7] Dong Shaoyang, Ju Hehua, Xu Hongxia. An improvement of D* lite algorithm for planetary rover mission planning[C]//2011 IEEE International Conference on Mechatronics and Automation. Washington, DC:IEEE Computer Society, 2011:1810-1815.
[8] Zhou Lanfeng, Yang Lina, Tang hanwei. Research on path planning algorithm and its application based on terrain slope for slipping prediction in complex terrain environment[C]//2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC).[S.l.]:Institute of Electrical and Electronics Engineers Inc, 2017:224-227.
[9] 董元元, 崔祜涛, 田阳. 基于栅格地图的火星车路径规划方法[J]. 深空探测学报, 2014, 1(4):289-293. Dong Yuanyuan, Cui Hutao, Tian Yang. A path-planning method for Mars rovers based on grid map[J]. Journal of Deep Space Exploration, 2014, 1(4):289-293.
[10] Raja R, Dutta A. Path planning in dynamic environment for a rover using A* and potential field method[C]//International Conference on Advanced Robotics.[S.l.]:Institute of Electrical and Electronics Engineers Inc, 2017:578-582.
[11] Speyerer E J, Lawrence S J, Stopar J D, et al. Optimized traverse planning for future polar prospectors based on lunar topography[J]. Icarus, 2016, 273:337-345.
[12] Sakayori G, Ishigami G. Energy efficient slope traversability planning for mobile robot in loose soil[C]//2017 IEEE International Conference on Mechatronics (ICM).[S.l.]:Institute of Electrical and Electronics Engineers Inc, 2017:99-104.
[13] Pérez-del-Pulgar C J, Sánchez J R, Azkarate M, et al. Path planning for reconfigurable rovers in planetary exploration[C]//IEEE International Conference on Advanced Intelligent Mechatronics.[S.l.]:Institute of Electrical and Electronics Engineers Inc, 2017:1453-1458.
[14] Xie Yuan, Zhou Jianliang, Wang Yong. Dynamic mission-level path planning for lunar rovers[C]//International Conference on Control Automation and Systems. Washington, D C:IEEE Computer Society, 2010:56-61.
[15] Sutoh M, Otsuki M, Wakabayashi S, et al. The right path:comprehensive path planning for lunar exploration rovers[J]. IEEE Robotics & Automation Magazine, 2015, 22(1):22-33. |