[1] Mostafa N, Abdelhameed I, Hesham A. Optimization of live virtual machine migration in cloud computing:A survey and future directions[J]. Journal of Network and Computer Applications, 2018(110):1-10.
[2] Khazaei H, Misic J, Misic V. Performance analysis of cloud computing centers using M/G/m/m+r queuing systems[J]. IEEE Transactions on Parallel and Distributed Systems, 2012, 23(5):936-943.
[3] Chang X, Wang B. Modeling active virtual machines on IaaS clouds using an M/G/m/m+K queue[J]. IEEE Transactions on Services Computing, 2016, 9(3):408-420.
[4] Cao J, Kai H, Li K, et al. Optimal multiserver configuration for profit maximization in cloud computing[J]. IEEE Transactions on Parallel & Distributed Systems, 2013, 24(6):1087-1096.
[5] Chen W, Cao J, Wan Y. QoS-Aware virtual machine scheduling for video streaming services in multi-Cloud[J]. Tsinghua Science and Technology, Special Section on Cloud Computing, 2013, 18(3), 308-317.
[6] Tian Y, Lin C, Li K. Managing performance and power consumption tradeoff for multiple heterogeneous servers in cloud computing[J]. Cloud coputation, 2014(17):845-955.
[7] Yang Z, Liu W, Xu D. Study of cloud service queuing model based on imbedding Markov chain perspective[J]. Cluster Computing, 2017(6):1-8.
[8] Zuo L, Shu L, Dong S, et al. Dynamically weighted load evaluation method based on self-adaptive threshold in cloud computing[J]. Mobile Networks and Applications, 2017, 22(1):4-8.
[9] Li Z. An adaptive overload threshold selection process using Markov decision processes of virtual machine in cloud data center[J/OL]. Cluster Computing, 2018. https://doi.org/10.1007/s10586-018-2408-4.
[10] Enver E. Performability analysis of cloud computing centers with large numbers of servers[J]. Journal of Supercomputing, 2017(73):1-27.
[11] Yin C, Jin S. An energy-saving strategy based on multi-server vacation queuing theory in cloud data center[J/OL]. The Journal of Supercomputing, 2018. https://doi.org/10.1007/s11227-018-2513-4.
[12] LoridoBotran T, MiguelAlonso J, Lozano J. A review of auto-scaling techniques for elastic applications in cloud environments[J]. Journal of Grid Computing, DOI 10.1007/s10723-014-9314-7.
[13] 马飞, 刘峰, 李竹伊. 云计算环境下虚拟机快速实时迁移方法[J]. 北京邮电大学学报, 2012, 35(01):103-106. Ma F, Liu F, Li Z Y. Fast live migration method of virtual machine in cloud computing environment[J]. Journal of Beijing University of Posts and Telecommunications, 2012, 35(01):103-106.
[14] 吴小东, 韩建军. 云数据中心基于阈值的虚拟机迁移节能调度算法[J]. 华中科技大学学报(自然科学版), 2018, 46(09):30-34. Wu X D, Han J J. Threshold-based energy efficient VM scheduling in cloud datacenters[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2018, 46(09):30-34.
[15] 姜栋瀚, 林海涛. 云计算环境下的资源分配关键技术研究综述[J]. 中国电子科学研究院学报, 2018, 13(03):308-314. Jiang D H, Lin H T. A summary of key techniques research on resource allocation in cloud computing environment[J]. Journal of China Academy of Elecronics and Information Technology, 2018, 13(3):308-314.
[16] Salah K, Elbadawi K, Boutaba R. An analytical model for estimating cloud resources of elastic services[J]. Journal of Netw System Management, 2016, 24(2):285-308.
[17] Green L V, Soares J, Giglio J F, Green R A. Using queueing theory to increase the effectiveness of emergency department provider staffing[J]. Academic Emergency Medicine, 2006, 13(1):61-68.
[18] Izady N, Worthington D J. Setting staffing requirements for time-dependent queueing networks:the case of accident and emergency department[J]s. European Journal of Operational Research, 2012(219):531-540.
[19] Neuts F. Structured stochastic matrices of M/G/1 type and their applications[M]. New York:Marcel Dekker, 1989:205-206.
[20] 唐应辉, 唐小我. 排队论:基础与分析技术[M]. 北京:科学出版社, 2006:50-53. |