JOURNAL OF BEIJING UNIVERSITY OF POSTS AND TELECOM ›› 2017, Vol. 40 ›› Issue (2): 1-10.doi: 10.13190/j.jbupt.2017.02.001
• Review • Next Articles
Mobile Edge Computing for 5G Requirements
TIAN Hui, FAN Shao-shuai, LÜ Xin-chen, ZHAO Peng-tao, HE Shuo
- State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
-
Received:
2017-04-04Online:
2017-04-28Published:
2017-04-28
CLC Number:
Cite this article
TIAN Hui, FAN Shao-shuai, LÜ Xin-chen, ZHAO Peng-tao, HE Shuo. Mobile Edge Computing for 5G Requirements[J]. JOURNAL OF BEIJING UNIVERSITY OF POSTS AND TELECOM, 2017, 40(2): 1-10.
share this article
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.bupt.edu.cn/EN/10.13190/j.jbupt.2017.02.001
[1] Cisco. Cisco visual networking index:global mobile data traffic forecast update, 2016-2021 white paper[EB/OL].[2017-03-01]. http://10.3.200.202/cache/10/03/cisco.com/89e8529e7886890c828d4a976994f806/mobile-white-paper-c11-520862.pdf. [2] Shi Bowen, Yang Ji, Huang Zhanpeng, et al. Offloading guidelines for augmented reality applications on wearable devices[C]//ACM International Conference.[S.l.]:ACM, 2015:1271-1274. [3] Miettinen A P, Nurminen J K. Energy efficiency of mobile clients in cloud computing[J]. HotCloud, 2010(10):4-4. [4] Melendez S. Computation offloading decisions for reducing completion time[Z]. arXiv, 2016:1608. 05839. [5] Zhang Weiwen, Wen Yonggang, Guan K, et al. Energy-optimal mobile cloud computing under stochastic wireless channel[J]. IEEE Transactions on Wireless Communications, 2013, 12(9):4569-4581. [6] Kumar K, Lu Y H. Cloud computing for mobile users:can offloading computation save energy[J]. Computer, 2010, 43(4):51-56. [7] Kumar K, Liu Jibang, Lu Y H, et al. A survey of computation offloading for mobile systems[J]. Mobile Networks and Applications, 2013, 18(1):129-140. [8] Barbarossa S, Sardellitti S, Di Lorenzo P. Communicating while computing:distributed mobile cloud computing over 5G heterogeneous networks[J]. IEEE Signal Processing Magazine, 2014, 31(6):45-55. [9] Yuan Jibang, Nahrstedt K. Energy-efficient soft real-time CPU scheduling for mobile multimedia systems[C]//ACM SIGOPS Operating Systems Review.[S.l.]:ACM, 2003:149-163. [10] Jia M, Cao Jibang, Yang Lei. Heuristic offloading of concurrent tasks for computation-intensive applications in mobile cloud computing[C]//2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).[S.l.]:IEEE, 2014:352-357. [11] Mahmoodi S E, Uma R N, Subbalakshmi K P. Optimal joint scheduling and cloud offloading for mobile applications[J]. IEEE Transactions on Cloud Computing, 2016(99):1-1. [12] Kao Y H, Krishnamachari B, Ra M R, et al. Hermes:latency optimal task assignment for resource-constrained mobile computing[C]//2015 IEEE Conference on Computer Communications (INFOCOM).[S.l.]:IEEE, 2015:1894-1902. [13] Zhang Weiwen, Wen Yonggang, Wu D O. Collaborative task execution in mobile cloud computing under a stochastic wireless channel[J]. IEEE Transactions on Wireless Communications, 2015, 14(1):81-93. [14] Khalili S, Simeone O. Inter-layer per-mobile optimization of cloud mobile computing:a message-passing approach[J]. Transactions on Emerging Telecommunications Technologies, 2016, 27(6):814-827. [15] Di Lorenzo P, Barbarossa S, Sardellitti S. Joint optimization of radio resources and code partitioning in mobile edge computing[Z]. arXiv, 2013:1307. 3835. [16] Mahmoodi S E, Subbalakshmi K P, Sagar V. Cloud offloading for multi-radio enabled mobile devices[C]//2015 IEEE International Conference on Communications (ICC).[S.l.]:IEEE, 2015:5473-5478. [17] Deng Maofei, Tian Hui, Fan Bo. Fine-granularity based application offloading policy in cloud-enhanced small cell networks[C]//2016 IEEE International Conference on Communications Workshops (ICC).[S.l.]:IEEE, 2016:638-643. [18] Zhao Pengtao, Tian Hui, Fan Bo. Partial critical path based greedy offloading in small cell cloud[C]//IEEE VTC.[S.l.]:IEEE, 2016:1-5. [19] Wang Yanting, Sheng Min, Wang Xijun, et al. Mobile-edge computing:partial offloading using dynamic voltage scaling[J]. IEEE Transactions on Communications, 2016, 64(10):4268-4282. [20] Huang Dong, Wang Ping, Niyato D. A dynamic offloading algorithm for mobile computing[J]. IEEE Transactions on Wireless Communications, 2012, 11(6):1991-1995. [21] Liu Juan, Mao Yuyi, Zhang Jun, et al. Delay-optimal computation task scheduling for mobile-edge computing systems[C]//2016 IEEE International Symposium on Information Theory (ISIT).[S.l.]:IEEE, 2016:1451-1455. [22] Chen Shuang, Wang Yanzhi, Pedram M. A semi-markovian decision process based control method for offloading tasks from mobile devices to the cloud[C]//Global Communications Conference (GLOBECOM).[S.l.]:IEEE, 2013:2885-2890. [23] Hong S T, Kim H. QoE-aware computation offloading scheduling to capture energy-latency tradeoff in mobile clouds[C]//201613th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON).[S.l.]:IEEE, 2016:1-9. [24] Kwak J, Kim Y, Lee J, et al. DREAM:dynamic resource and task allocation for energy minimization in mobile cloud systems[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(12):2510-2523. [25] Jiang Zhefeng, Mao Shiwen. Energy delay tradeoff in cloud offloading for multi-core mobile devices[J]. IEEE Access, 2015(3):2306-2316. [26] Lü Xinchen, Tian Hui. Adaptive receding horizon offloading strategy under dynamic environment[J]. IEEE Communications Letters, 2016, 20(5):878-881. [27] He Shuo, Tian Hui, Lü Xinchen. Edge popularity prediction based on social-driven propagation dynamics[J]. IEEE Communications Letters, 2017, 21(5):1-4. [28] Wang Chuanmeizhi, Li Yong, Jin Depeng. Mobility-assisted opportunistic computation offloading[J]. IEEE Communications Letters, 2014, 18(10):1779-1782. [29] Zhang Yang, Niyato D, Wang Ping. Offloading in mobile cloudlet systems with intermittent connectivity[J]. IEEE Transactions on Mobile Computing, 2015, 14(12):2516-2529. [30] Lee K, Shin I. User mobility model based computation offloading decision for mobile cloud[J]. JCSE, 2015, 9(3):155-162. [31] Rahimi M R, Venkatasubramanian N, Vasilakos A V. MuSIC:mobility-aware optimal service allocation in mobile cloud computing[C]//2013 IEEE Sixth International Conference on Cloud Computing (CLOUD).[S.l.]:IEEE, 2013:75-82. [32] Prasad A, Lundén P, Moisio M, et al. Efficient mobility and traffic management for delay tolerant cloud data in 5G networks[C]//2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).[S.l.]:IEEE, 2015:1740-1745. [33] Ko S W, Huang Kaibin, Kim S L, et al. Online prefetching for mobile computation offloading[Z]. arXiv, 2016:1608. 04878. [34] Li Yujin, Sun Lei, Wang Wenye. Exploring device-to-device communication for mobile cloud computing[C]//2014 IEEE International Conference on Communications (ICC).[S.l.]:IEEE, 2014:2239-2244. [35] Chen C A, Won M, Stoleru R, et al. Energy-efficient fault-tolerant data storage and processing in mobile cloud[J]. IEEE Transactions on Cloud Computing, 2015, 3(1):28-41. [36] Chen C A, Stoleru R, Xie G G. Energy-efficient and fault-tolerant mobile cloud storage[C]//20165th IEEE International Conference on Cloud Networking (Cloudnet).[S.l.]:IEEE, 2016:51-57. [37] Chaisiri S, Lee B S, Niyato D. Optimization of resource provisioning cost in cloud computing[J]. IEEE Transactions on Services Computing, 2012, 5(2):164-177. [38] Zhang Yuan, Yan Jinyao, Fu Xiaoming. Reservation-based resource scheduling and code partition in mobile cloud computing[C]//2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).[S.l.]:IEEE, 2016:962-967. [39] Lü Xinchen, Tian Hui, Zhang Ping, et al. Multi-user joint task offloading and resources optimization in proximate clouds[J]. IEEE Transactions on Vehicular Techology, 2017, 66(4):3435-3447. [40] You Changsheng, Huang Kaibin, Chae H, et al. Energy-efficient resource allocation for mobile-edge computation offloading[J]. IEEE Transactions on Wireless Communications, 2017, 16(3):1397-1411. [41] Barbarossa S, Sardellitti S, Lorenzo P Di. Joint allocation of computation and communication resources in multiuser mobile cloud computing[C]//IEEE International Workshop Signal Processing Advances Wireless Communications (SPAWC). Darmstadt, Germany:[s.n.], 2013:26-30. [42] Lorenzo P D, Barbarossa S, Sardellitti S. Joint optimization of radio resources and code partitioning in mobile edge computing[Z]. arXiv, 2016:1307. 3835v3. [43] Hoang D T, Niyato D, Wang Ping. Optimal admission control policy for mobile cloud computing hotspot with cloudlet[C]//IEEE Wireless Communications and Networking Conference (WCNC). Paris, France:[s.n.], 2012:3145-3149. [44] Mao Yuyi, Zhang Jun, S Song, et al. Power-delay tradeoff in multi-user mobile-edge computing systems[C]//IEEE Global Communications Conference (GLOBECOM). Washington, DC:[s.n.], 2016:1-6. [45] Munoz O, P-Iserte A, Vidal J. Optimization of radio and computational resources for energy efficiency in latency-constrained application offloading[J]. IEEE Transactions on Vehicular Technology, 2015, 64(10):497-508. [46] Munoz O, P-Iserte A, Vidal J. Joint optimization of radio and computational resources for multicell mobile-edge computing[J]. IEEE Transactions on Signal and Information Processing Over Networks, 2015, 1(2):89-103. [47] Wang Kezhi, Yang Kun, Magurawalage C. Joint energy minimization and resource allocation in C-RAN with mobile cloud[J]. IEEE Transactions on Cloud Computing, 2016(99):1-10. [48] Chen Xu, Jiao Lei, Li Wenzhong, et al. Efficient multi-user computation offloading for mobile-edge cloud computing[J]. IEEE Transactions on Networking, 2016(24):2795-2808. [49] Ma Xiao, Lin Chuang, Xiang Xudong, et al. Game-theoretic analysis of computation offloading for cloudlet-based mobile cloud computing[C]//ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM). Cancun, Mexico:[s. n.], 2015:271-278. [50] Deng Maofei, Tian Hui, Lü Xinchen. Adaptive sequential offloading game for multi-cell mobile edge computing[C]//201623rd International Conference on Telecommunications (ICT). Thessaloniki:[s. n.], 2016:1-5. [51] Lopez-Perez D, Guvenc I, Chu Xiaoli. Mobility management challenges in 3GPP heterogeneous networks[J]. IEEE Communications Magazine, 2012, 50(12):70-78. [52] Kassar M, Kervella B, Pujolle G. An overview of vertical handover decision strategies in heterogeneous wireless networks[J]. Computer Communications, 2008, 31(10):2607-2620. |
[1] | . Research on Resource Allocation and Task Offloading Joint Optimization for Mobile Edge Computing in Ultra-Dense Networks [J]. Journal of Beijing University of Posts and Telecommunications, 2023, 46(2): 50-56. |
[2] | . Reaserch of On-Board Edge DNN Inference Strategies For LEO Satellite Networks [J]. Journal of Beijing University of Posts and Telecommunications, 2023, 46(2): 57-63. |
[3] | LU Weifeng, LI Xueqing, XU Jia, CHEN Siguang. Combined Multi-Resource Task Offloading Algorithm for P2P in Edge Computing [J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(4): 98-103. |
[4] | ZHI Jialin, WANG Nan, MAN Yi, TENG Yinglei. Hardware Model-Aware Joint Offloading and Resources Allocation Optimization [J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(2): 22-28. |
[5] | DU Mei, ZHOU Junhua, LI Dunqiao, CHEN Shizhao, WEI Yifei. A Joint Intelligent Optimization Scheme of Computation Offloading and Resource Allocation for MEC [J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(2): 65-71. |
[6] | ZHANG Yuqing, LI Yun, HUANG Hongrui, ZHUANG Hongcheng. Joint Optimization Algorithm for Task Offloading and Resource Allocation in Heterogeneous Networks [J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(2): 91-97. |
[7] | ZHENG Yuan-peng, ZHANG Tian-kui, ZHU Guang-yu, SHEN Hong. Network Slicing-Oriented Joint Allocation Algorithm of 3C Resources in MEC Systems [J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(5): 41-47. |
[8] | YANG Peng, ZHANG Yi-fu, LI Zhi-du, WU Da-peng, WANG Ru-yan. Latency Guarantee Model for Reliable Edge-Node Cooperation [J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(2): 47-53. |
[9] | KANG Man-cong, LI Xi, JI Hong, ZHANG He-li. Collaborative Computation Offloading Exploring Task Dependencies in Small Cell Networks [J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(1): 72-78. |
[10] | XUE Jian-bin, BAI Zi-mei. Security and Efficient Authentication Scheme for Mobile Edge Computing [J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(1): 110-116. |
[11] | ZHAO Wei, WANG Bin, BAO Hui, ZHAO Pin-fang, LI Bao-gang. Energy Efficient Resource Allocation for Secure MEC System Based on mMIMO [J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(6): 126-131. |
[12] | MA Lu, LIU Ming, LI Chao, LU Zhao-ming, MA Huan. A Cloud-Edge Collaborative Computing Task Scheduling Algorithm for 6G Edge Networks [J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(6): 66-73. |
[13] | XUE Jian-bin, LIU Xing-xing, DING Xue-qian. Energy Efficiency Optimization Scheme Based on Energy Harvesting in Mobile Edge Computing [J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(5): 15-20. |
[14] | XUE Jian-bin, DING Xue-qian, LIU Xing-xing. Offloading Decision and Resource Optimization for Cache-Assisted Edge Computing [J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(3): 32-37. |
[15] | JING Ze-wei, YANG Qing-hai, QIN Meng. A Delay and Energy Tradeoff Optimization Algorithm for Task Offloading in Mobile-Edge Computing Networks [J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(2): 110-115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||