[1] Huang N E. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London a Mathematical Physical & Engineering Sciences, 1998, 454(1971):903-995.
[2] 王建国, 李健, 万旭东. 基于奇异值分解和局域均值分解的滚动轴承故障特征提取方法[J]. 机械工程学报, 2015, 51(3):104-110. Wang Jian guo, Li Jian, Wan Xu dong. Fault feature extraction method of rolling bearings based on singular value decomposition and local mean decomposition [J]. Journal of Mechanical Engineering, 2015, 51(3):104-110.
[3] 李志农, 刘卫兵, 易小兵. 基于局域均值分解的机械故障欠定盲源分离方法研究[J]. 机械工程学报, 2011, 47(7):97-102. Li Zhinong, Liu Weibing, Yi Xiaobing. Underdetermined blind source separation method of machine faults based on local mean decomposition [J]. Journal of Mechanical Engineering, 2011, 47(7):97-102.
[4] 张俊红, 李林洁, 刘海, 等. 基于经验模态分解和独立成分分析的柴油机噪声源识别技术[J]. 内燃机学报, 2012, 30(6):544-549. Zhang Junhong, Li Linjie, Liu Hai. et, al. Identification of diesel engine noise source based on empirical mode decomposition and independent component analysis using EMD-ICA [J]. Transaction of CSICE, 2012, 30(6):544-549.
[5] 许同乐, 张新义, 裴新才, 等. EMD遗传神经网络方法[J]. 北京邮电大学学报, 2012, 35(5):68-72. Xu Tongle, Zhang Xinyi, Pei Xincai, et al. EMD genetic neural networks method [J]. Journal of Beijing University of Posts and Telecommunications, 2012, 35(5):68-72.
[6] Wang Y, He Z, Zi Y. A comparative study on the local mean decomposition and empirical mode decomposition and their applications to rotating machinery health diagnosis[J]. Journal of Vibration & Acoustics, 2010, 132(2):613-624.
[7] 许同乐, 侯蒙蒙, 蔡道勇, 等. FastICA遗传神经网络算法[J]. 北京邮电大学学报, 2014, 37(4):25-28. Xu Tongle, Hou Mengmeng, Cai Daoyong, et al. FastICA genetic neural networks method [J]. Journal of Beijing University of Posts and Telecommunications, 2014, 37(4):25-28.
[8] 程军圣, 张亢, 杨宇, 等. 局部均值分解与经验模式分解的对比研究[J]. 振动与冲击, 2009, 28(5):13-16. Cheng Junsheng, Zhang Kang, Yang Yu, et, al. Comparison between the method of local mean decomposition and empirical mode decomposition[J]. Journal of Vibration and Shock, 2009, 28(5):13-16.
[9] 曲从善, 路廷镇, 谭营. 一种改进型经验模态分解及其在信号消噪中的应用[J]. 自动化学报, 2010, 36(1):67-73. Qu Cong-shan, Lu Ting-zhen, Tan Ying. A modified empirical mode decomposition method with applications to signal de-noising[J]. Acta Automatica Sinica, 2010, 36(1):67-73.
[10] Gan Y, Sui L, Xiao G, et al. EMD de-noising theory considering static and dynamic conditions and its applications in INS [M]. Berlin Heidelberg:Springer. 2013:507-515.
[11] 喻敏, 王斌, 王文波, 等. 联合EMD与核主成分分析的激光陀螺信号消噪[J]. 武汉大学学报(信息科学版), 2015, 40(2):233-237. Yu Min, Wang Bin, Wang Wenbo, et, al. Laser gyro signal de-noising based on EMD and kernel principal component analysis [J]. Geomatics and Information Science of Wuhan University, 2015, 40(2):233-237. |