[1] Ning X, Karypis G. SLIM:sparse linear methods for Top-N recommender systems[C]//201111th IEEE International Conference on Data Mining. Vancouver, Canada:IEEE ICDM, 2011:497-506.
[2] Zaharia M, Chowdhury M, Das T, et al. Fast and interactive analytics over Hadoop data with Spark[J]. USENIX, 2012, 37(4):45-51.
[3] Marlin B M. Modeling user rating profiles for collaborative filtering[C]//Advances in Neural Information Processing Systems 16. Vancouver, Canada:NIPS, 2003:627-634.
[4] Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International Conference on World Wide Web. Hong Kong:ACM, 2001:285-295.
[5] Zou H, Hastie T. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society:Series B (Statistical Methodology), 2005, 67(2):301-320.
[6] Zhang T. Solving large scale linear prediction problems using stochastic gradient descent algorithms[C]//Proceedings of the Twenty-first International Conference on Machine Learning. New York, USA:ACM, 2004:116.
[7] Tsuruoka Y, Tsujii J, Ananiadou S. Stochastic gradient descent training for l1-regularized log-linear models with cumulative penalty[C]//Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP:Volume 1-Volume 1. Suntec, Singapore:Association for Computational Linguistics, 2009:477-485. |