[1] Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6):734-749.
[2] 蔡国永, 吕瑞, 樊永显. 基于标签和因子分析的协同推荐方法[J]. 北京邮电大学学报, 2015, 38(3):34-38. Cai Guoyong, Lü Rui, Fan Yongxian. Collaborative recommendation method based on tags and factor analysis[J]. Journal of Beijing University of Posts and Telecommunications, 2015, 38(3):34-38.
[3] 印桂生, 张亚楠, 董红斌, 等. 一种由长尾分布约束的推荐方法[J]. 计算机研究与发展, 2013, 50(9):1814-1824. Yin Guisheng, Zhang Yanan, Dong Hongbin, et al. A long tail distribution constrained recommendation method[J]. Journal of Computer Research and Development, 2013, 50(9):1814-1824.
[4] Adamopoulos P, Tuzhilin A. On over-specialization and concentration bias of recommendations:probabilistic neighborhood selection in collaborative filtering systems[C]//Proceedings of the 8th ACM Conference on Recommender systems. New York:ACM, 2014:153-160.
[5] Adomavicius G, Kwon Y O. Improving aggregate recommendation diversity using ranking-based techniques[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(5):896-911.
[6] Vargas S, Castells P. Improving sales diversity by recommending users to items[C]//Proceedings of the 8th ACM Conference on Recommender Systems. New York:ACM, 2014:145-152.
[7] Zhou Tao, Kuscsik Z, Liu Jianguo, et al. Solving the apparent diversity-accuracy dilemma of recommender systems[J]. Proceedings of the National Academy of Sciences, 2010, 107(10):4511-4515.
[8] Lü Linyuan, Medo M, Yeung C H, et al. Recommender systems[J]. Physics Reports, 2012, 519(1):1-49. |