[1] Miettinen M, Halonen P, Hatonen K. Host-based intrusion detection for advanced mobile devices[C]//20th International Conference on Advanced Information Networking and Applications, 2006. Austria: IEEE, 2006: 72-76.[2] Bente I, Hellmann B, Vieweg J, et al. TCADS: trustworthy, context-related anomaly detection for smartphones[C]//15th International Conference on Network-Based Information Systems, 2012. Australia: IEEE, 2012: 247-254.[3] Shabtai A, Moskovitch R, Feher C, et al. Detecting unknown malicious code by applying classification techniques on OpCode patterns[J]. Security Informatics, 2012, 1(1): 1-22.[4] Li Qi, Zhang Miao, Xu Guoai. A novel element detection method in audio sensor networks[J]. International Journal of Distributed Sensor Network, 2013, Article ID 607187.[5] 刘春波, 段雪涛, 贾春福. 基于层次隐马尔科夫模型和变长语义模式的入侵检测方法[J]. 通信学报, 2010(3): 109-114. Liu Chunbo, Duan Xuetao, Jia Chunfu. Intrusion detection method based on hierarchical hidden Markov model and variable-length semantic pattern[J]. Journal on Communications, 2010(3): 109-114.[6] Cristianini N, Shawe T J. An introduction to support vector machines and other kernel-based learning methods[M]. Cambridge: Cambridge University Press, 2000: 121-147.[7] Blasing T, Batyuk L, Schmidt A, et al. An android application sandbox system for suspicious software detection[C]//5th International Conference on Malicious and Unwanted Software, 2010. France: IEEE, 2010: 55-62. |