[1] 陈维兴, 苏景芳, 赵卉. 基于博弈的机坪感知网络机会传输控制方法[J]. 北京邮电大学学报, 2020, 43(5):57-63. CHEN W X, SU J F, ZHAO H. Opportunistic transmission control method for apron sensing network based on game theory[J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(5):57-63. [2] 毕俊蕾, 李致远. 机会社交网络中基于时变兴趣社区的查询消息路由算法[J]. 通信学报, 2019, 40(9):86-94. BI J L, LI Z Y. Time-variant interest community based query message routing algorithm in opportunity social network[J]. Journal on Communications, 2019, 40(9):86-94. [3] CAI X L, SHU J, AL-KALI M. Link prediction approach for opportunistic networks based on recurrent neural network[J]. IEEE Access, 2019, 7:2017-2025. [4] LEI K, QIN M, BAI B, et al. GCN-GAN:a non-linear temporal link prediction model for weighted dynamic networks[C]//IEEE INFOCOM 2019-IEEE Conference on Computer Communications. Piscataway, NJ:IEEE Press, 2019:388-396. [5] CHEN J Y, ZHANG J, XU X H, et al. E-LSTM-D:a deep learning framework for dynamic network link prediction[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2021, 51(6):3699-3712. [6] WANG B, POURSHAFEIE A, ZITNIK M, et al. Network enhancement as a general method to denoise weighted biological networks[J]. Nature Communications, 2018, 9(1):1-8. [7] 谭索怡, 祁明泽, 吴俊, 等. 复杂网络链路可预测性:基于特征谱视角[J]. 物理学报, 2020, 69(8):226-235. TAN S Y, Qi M Z, WU J, et al. Link predictability of complex network from spectrum perspective[J]. Acta Physica Sinica, 2020, 69(8):226-235. [8] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the Advances in Neural Information Processing Systems. Long Beach:Curran Associates Inc, 2017:5998-6008. [9] GROVER A, LESKOVEC J. Node2vec:scalable feature learning for networks[C]//Proceedings International Conference on Knowledge Discovery & Data Mining. New York:ACM, 2016:855-864. [10] GOYAL P, KAMRA N, HE X R, et al. DynGEM:deep embedding method for dynamic graphs[EB/OL]. (2018-05-29)[2021-09-20]. https://arxiv.org/abs/1805.11273. |