[1] CAO W, CHEN H D, YU Y W, et al. Changing profiles of cancer burden worldwide and in China:a secondary analysis of the global cancer statistics 2020[J]. Chinese Medical Journal, 2021, 134(7):783-791. [2] 赫捷, 李霓, 陈万青, 等. 中国肺癌筛查与早诊早治指南(2021, 北京)[J]. 中华肿瘤杂志, 2021, 30(2):81-111. HE J, LI N, CHEN W Q, et al. China guideline for the screening and early detection of lung cancer (2021, Beijing)[J]. China Cancer, 2021, 30(2):81-111. [3] 张天麒, 康波, 孟祥飞, 等. 基于U-Net的颅内出血识别算法[J]. 北京邮电大学学报, 2020, 43(3):92-98. ZHANG T Q, KANG B, MENG X F, et al. U-net based intracranial hemorrhage recognition[J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(3):92-98. [4] HADJI I, WILDES R P. What do we understand about convolutional networks?[EB/OL].(2018-03-23)[2021-08-30]. https://arxiv.org/abs/1803.08834. [5] BU T, YANG Z Y, JIANG S, et al. 3D conditional generative adversarial network-based synthetic medical image augmentation for lung nodule detection[J]. International Journal ofImaging Systems and Technology, 2021, 31(2):670-681. [6] MIRSKY Y, MAHLER T, SHELEF I, et al. CT-GAN:malicious tampering of 3D medicalimagery using deep learning[C]//Proceedings of the 28th USENIX Conference on Security Symposium. Santa Clara:USENIX Association, 2019:461-478. [7] TANG H, ZHANG C P, XIE X H. NoduleNet:decoupled false positive reduction for pulmonary nodule detection and segmentation[C]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2019. Berlin:Springer, 2019:266-274. [8] 王乾梁, 石宏理. 基于改进YOLO V3的肺结节检测方法[J]. 中国医学物理学杂志, 2021, 38(9):1179-1184. WANG Q L, SHI H L. Pulmonary nodule detection based on improved YOLO V3[J]. Chinese Journal of Medical Physics, 2021, 38(9):1179-1184. [9] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Pascataway, NJ:IEEE Press, 2018:7132-7141. [10] WOO S, PARK J, LEE J Y, et al. CBAM:convolutional block attention module[C]//Computer Vision-ECCV 2018. Berlin:Springer, 2018:3-19. [11] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Pascataway, NJ:IEEE Press, 2021:13708-13717. [12] GHIASI G, LIN T Y, LE Q V. DropBlock:a regularization method for convolutional networks[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montreal:Curran Associates Inc, 2018:10750-10760. [13] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4:optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2021-08-30]. https://arxiv.org/abs/2004.10934v1. [14] HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[C]//NIPs'17:Proceedings of the 31st International Conference on Neural Information Processing Systems.[S.l.]:Curran Associates Inc, 2017:6629-6640. |