[1] 国家互联网应急中心. 2020年中国互联网网络安全报告[EB/OL].北京:人民邮电出版社, 2021:(2021-07-21)[2021-10-26]. http://www.cac.gov.cn/2021-07/21/c_1628454189500041.htm. [2] 李利,韩伟红,梅阳阳,等.当前网络空间安全技术发展现状及思考[J].信息技术与网络安全, 2021, 40(5):33-38. LI L, HAN W H, MEI Y Y, et al. The current situation and thinking of the development of cyberspace security technology[J]. Information Technology and Network Security, 2021, 40(5):33-38. [3] 贾焰,方滨兴,李爱平,等.基于人工智能的网络空间安全防御战略研究[J].中国工程科学, 2021, 23(3):98-105. JIA Y, FANG B X, LI A P, et al. Artificial intelligence enabled cyberspace security defense[J]. Strategic Study of CAE, 2021, 23(3):98-105. [4] 张勇东,陈思洋,彭雨荷,等.基于深度学习的网络入侵检测研究综述[J].广州大学学报(自然科学版), 2019, 18(3):17-26. ZHANG Y D, CHEN S Y, PENG Y H, et al. A survey of deep learning based network intrusion detection[J]. Journal of Guangzhou University (Natural Science Edition), 2019, 18(3):17-26. [5] FINSTERBUSCH M, RICHTER C, ROCHA E, et al. A survey of payload-based traffic classification approaches[J]. IEEE Communications Surveys&Tutorials, 2014, 16(2):1135-1156. [6] MARIN G, CASAS P, CAPDEHOURAT G. Deep in the dark-deep learning-based malware traffic detection without expert knowledge[C]//IEEE Security and Privacy Workshops. Piscataway, NJ:IEEE Press, 2019:36-42. [7] KANNA P R, SANTHI P. Unified deep learning approach for efficient intrusion detection system using integrated spatial-temporal features[J]. Knowledge-Based Systems, 2021, 226(1):107132-107144. [8] YU L, DONG J T, CHEN L H, et al. PBCNN:Packet bytes-based convolutional neural network for network intrusion detection[J]. Computer Networks, 2021, 194(1):108117-108139. [9] WANG Z H, JIANG D D, HUO L W, et al. An efficient network intrusion detection approach based on deep learning[J]. Wireless Networks, 2021, 1(1):1-14. [10] SWARNA S, RATNA S. Investigation of machine learning techniques in intrusion detection system for IoT network[C]//International Conference on Intelligent Sustainable Systems. Piscataway, NJ:IEEE Press, 2020:1164-1167. [11] MOUSTAFA N, SLAY J. UNSW-NB15:a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set)[C]//Military Communications and Information Systems Conference. Piscata-way, NJ:IEEE Press, 2015:1-6. |