[1] Robles R, Tovar E, Cintra J, et al. Wireless avionics intra-communications:current trends and design issues[C]//ICDIM 2016:Eleventh International Conference on Digital Information Management. New York:IEEE Press, 2016:266-273. [2] Park P, Di Marco P, Nah J, et al. Wireless avionics intra-communications:a survey of benefits, challenges, and solutions[J]. IEEE Internet of Things Journal, 2020, 7(99):1-23. [3] Ramanatt P R, Natarajan K, Shobha K R. Challenges in implementing a wireless avionics network[J]. Aircraft Engineering and Aerospace Technology, 2020, 92(3):482-494. [4] Yedavalli R K, Belapurkar R K. Application of wireless sensor networks to aircraft control and health management systems[J]. Journal on Control Theory Applications, 2011, 9(1):28-36. [5] Zhang Chao, Xiao Jialuo, Zhao Liang. Wireless asynchronous transfer mode based fly-by-wireless avionics network[C]//IEEE/AIAA 32nd Digital Avionics Systems Conference(DASC). New York:IEEE Press, 2013:1-9. [6] International Telecommunication Union. Technical cha-racteristics and spectrum requirements of wireless avionics intra-communications systems to support their safe operation:ITU-R M.2283-0-2013[S]. Geneva:Electronic Publication, 2014:27-30. [7] Park P, Chang W. Performance comparison of industrial wireless networks for wireless avionics intra-communications[J]. IEEE Communications Letters, 2017, 21(1):116-119. [8] International Telecommunication Union. Technical cha-racteristics and operational objectives for wireless avionics intra-communications(WAIC):ITU-R M.2197-0-2010[S]. Geneva:Electronic Publication, 2011:7-11. [9] 谢希仁. 计算机网络[M]. 北京:电子工业出版社, 2008:30-31. [10] International Telecommunication Union. Consideration of the aeronautical mobile(route), aeronautical mobile, and aeronautical radio navigation services allocations to accommodate wireless avionics intra-communication:ITU-R M.2318-0-2014[S]. Geneva:Electronic Publication, 2015:11-29. [11] Suryanegara M, Nashirudin A, Raharya N, et al. The compatibility model between the wireless avionics intra-communications(WAIC) and fixed services at 22-23 GHz[C]//2015 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology(ICARES). New York:IEEE Press, 2016:1-5. [12] International Telecommunication Union. Compatibility analysis between wireless avionic intra-communication systems and systems in the existing services in the frequency band 4 200-4 400 MHz:ITU-R M.2319-0-2014[S]. Geneva:Electronic Publication, 2015:35-66. [13] Raharya N, Suryanegara M. Compatibility analysis of wireless avionics intra-communications(WAIC) to radio altimeter at 4 200-4 400 MHz[C]//2014 IEEE Asia Pacific Conference on Wireless and Mobile(APWiMob). New York:IEEE Press, 2016:1-5. [14] Engelbrecht J, Fuss T, Schwark U, et al. Measurement of interference path loss between wireless avionics intra-communications system and aircraft systems at 4.2-4.4 GHz band[C]//Antennas & Propagation Conference. New York:IEEE Press, 2014:119-123. [15] International Telecommunication Union. Technical conditions for the use of wireless avionics intra-communication systems operating in the aeronautical mobile(R) service in the frequency band 4 200-4 400 MHz:ITU-R M.2085-0-2015[S]. Geneva:Electronic Publication, 2016:31-53. [16] Tetsuya Sekiguchi, Takashi Hikage, Manobu Yamamots, et al. Numerical estimation of propagation path loss for wireless link design of WAIC systems installed on outside aircraft cabin based on large-scale FDTD simulation[J]. IEICE Communications Express, 2019, 8(5):129-134. [17] Saghir H, Nerguizian C, Laurin J J, et al. In-cabin wideband channel characterization for WAIC systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1):516-529. [18] Robles R, Tovar E, Cintra J, et al. Wireless avionics intra-communications:current trends and design issues[C]//2016 Eleventh International Conference on Digital Information Management(ICDIM). New York:IEEE Press, 2016:266-273. [19] Zuo Yuanjun, Li Qiao, Xiong Huagang, et al. Analysis and simulation of avionics MB-OFDM-UWB wireless interconnection channel[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7):1-10. [20] Suryanegara M, Raharya N. Modulation performance in wireless avionics intra communications(WAIC)[C]//International Conference on Information Technology. New York:IEEE Press, 2015:434-437. [21] Das S, Das S S, Chakrabarti I. Hardware implementation of MIL-STD-1553 protocol over OFDMA-PHY based wireless high data rate avionics systems[C]//IEEE International Conference on Advanced Networks & Telecommunications Systems. New York:IEEE Press, 2017:1-6. [22] Jian L, Keusgen W, Kortke A, et al. A design concept for a 60 GHz wireless in-flight entertainment system[C]//Vehicular Technology Conference. New York:IEEE Press, 2008:21-24. [23] Bang I, Nam H, Chang W, et al. Channel measurement and feasibility test for wireless avionics intra-communications[J]. Sensors, 2019, 19(6):1-15. [24] IX-IEC. Industrial networks-wireless communication network and communication profiles-ISA 100.11a:IEC 62734-2014[S]. Geneva:IEC, 2014:35-40. [25] 裘莹, 李士宁, 徐相森, 等. 传感器网络邻居发现协议综述[J]. 计算机学报, 2016, 39(5):973-992. Qiu Ying, Li Shining, Xu Xiangsen, et al. Survey on neighbor discovery protocol for sensor networks[J]. Chinese Journal of Computers, 2016, 39(5):973-992. [26] Olulana F. Coexistence of wireless avionics intra-communications networks based on frequency hopping with collision avoidance[C]//2018 IEEE 38th International Conference on Electronics and Nanotechnology(ELNANO). New York:IEEE Press, 2018:483-488. [27] Sambou B, Peyrard F, Fraboul C. Scheduling avionics flows on an IEEE 802.11e HCCA and AFDX hybrid network[C]//IEEE Symposium on Computers and Communications (ISCC). New York:IEEE Press, 2011:205-212. [28] Sambou B, Peyrard F, Fraboul C. AFDX wireless scheduler and free bandwidth managing in 802.11e(HCCA)/AFDX network[C]//7th International Wireless Communication and Mobile Computing Conference. New York:IEEE Press, 2011:2109-2114. [29] Robles R. MAC-PRY cross-layer design for secure wireless avionics intra-communications[C]//2019 Eighth International Conference on Emerging Security Technologies(EST). New York:IEEE Press, 2019:1-7. [30] 任秀丽, 于海斌. ZigBee无线通信协议实现技术的研究[J]. 计算机工程与应用, 2007, 43(6):143-145. Ren Xiuli, Yu Haibin. Study of realizing technology on zigbee wireless communication protocol[J]. Computer Engineering and Applications, 2007, 43(6):143-145. [31] Ganjali Y, Keshavarzian A. Load balancing in ad hoc networks:single-path routing vs multi-path routing[C]//2004 IEEE INFOCOM. New York:IEEE Press, 2004:1120-1125. [32] Parissidis G, Lenders V, May M, et al. Multi-path routing protocols in wireless mobile adhoc networks:a quantitative comparison[C]//2006 Next Generation Teletraffic and Wired/Wireless Advanced Networking (NEW2AN). Heidelberg:Springer, 2006:313-326. [33] Robles R, Neves J. Secure wireless avionics intra-communications:the SCOTT approach[J]. Ada User Journal, 2018, 39(4):267-276. |