[1] Yatani K, Truong K N. BodyScope:a wearable acoustic sensor for activity recognition[C]//UbiComp 2012:Proceedings of the 2012 ACM Conference on Ubiquitous Computing. New York:ACM, 2012:341-350. [2] Kim D, Hilliges O, Izadi S, et al. Digits:freehand 3D interactions anywhere using a wrist-worn gloveless sensor[C]//UIST 2012:Proceedings of the 25th annual ACM Symposium on User Interface Software and Technology. Massachusetts:ACM, 2012:167-176. [3] Herath S, Harandi M, Porikli F. Going deeper into action recognition:a survey[J]. Image and Vision Computing, 2017, 60:4-21. [4] Kerola T, Inoue N, Shinoda K. Spectral graph skeletons for 3D action recognition[C]//ACCV 2014:Proceedings of the Asian Conference on Computer Vision. Singapore:Springer, 2014:417-432. [5] El-Kafrawy K, Youssef M, El-Keyi A, et al. Propagation modeling for accurate indoor WLAN RSS-based localization[C]//VTC-Fall 2010:Proceedings of the 2010 IEEE 72nd Vehicular Technology Conference-Fall. Cairo:IEEE, 2010:1-5. [6] Kosba A E, Abdelkader A, Youssef M. Analysis of a device-free passive tracking system in typical wireless environments[C]//NTMS 2009:Proceedings of the 3rd International Conference on New Technologies, Mobility and Security. Ottawa:IEEE, 2009:1-5. [7] PuQifan, Gupta S, Gollakota S, et al. Whole-home gesture recognition using wireless signals[C]//MobiCom 2013:Proceedings of the 19th Annual International Conference on Mobile Computing & Networking. Florida:ACM, 2013:27-38. [8] Kellogg B, Talla V, Gollakota S. Bringing gesture recognition to all devices[C]//NSDI 2014:Proceedings of the 11th USENIX Symposium on Networked Systems Design and Implementation. Seattle:ACM, 2014:303-316. [9] Wang Yuxi, Wu Kaishun, Ni L M. Wifall:device-free fall detection by wireless networks[J]. IEEE Transactions on Mobile Computing, 2016, 16(2):581-594. [10] Wang Wei, Liu A X, Shahzad M, et al. Understanding and modeling of wifi signal based human activity recognition[C]//MobiCom 2015:Proceedings of the 21st Annual International Conference on Mobile Computing and Networking. Paris:ACM, 2015:65-76. [11] Wang Yan, Liu Jian, Chen Yingying, et al. E-eyes:device-free location-oriented activity identification using fine-grained wifi signatures[C]//MobiCom 2014:Proceedings of the 20th Annual International Conference on Mobile Computing and Networking. Hawaii:ACM, 2014:617-628. [12] Xi Wei, Zhao Jizhong, Li Xiangyang, et al. Electronic frog eye:counting crowd using wifi[C]//INFOCOM 2014:Proceedings of the IEEE Conference on Computer Communications. Toronto:IEEE, 2014:361-369. [13] Li Hong, Yang Wei, Wang Jianxin, et al. WiFinger:talk to your smart devices with finger-grained gesture[C]//UbiComp 2016:Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. Heidelberg:ACM, 2016:250-261. [14] Zeng Yunze, Pathak P H, Mohapatra P. WiWho:wifi-based person identification in smart spaces[C]//IPSN 2016:Proceedings of the 15th International Conference on Information Processing in Sensor Networks. Vienna:IEEE, 2016:4. [15] Halperin D, Hu Wenjun, Sheth A, et al. Tool release:gathering 802.11n traces with channel state information[J]. ACM SIGCOMM Computer Communication Review, 2011, 41(1):53-53. [16] Qian Kun, Wu Chenshu, Zhou Zimu, et al. Inferring motion direction using commodity Wi-Fi for interactive exergames[C]//CHI 2017:Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. Denver:ACM, 2017:1961-1972. [17] Palipana S, Rojas D, Agrawal P, et al. FallDeFi:ubiquitous fall detection using commodity Wi-Fi devices[J]. ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 1(4):1-25. |