[1] Zhang X, Zhao J, LeCun Y. Character-level convolutional networks for text classification[C]//2015 Neural Information Processing Systems(NIPS2015). Montreal:[s. n.], 2015:649-657.
[2] Lai S, Xu L, Liu K, et al. Recurrent convolutional neural networks for text classification[C]//2017 Association for the Advancement of Artificial Intelligence (AAAI 2017). Austin Texas:AAAI Press, 2017:2267-2273.
[3] Joulin A, Grave E, Bojanowski P, et al. Bag of tricks for efficient text classification[C]//2017 European Chapter of the Association for Computational Linguistics(EACL2017). Valencia:ACL Press, 2017:427-431.
[4] Conneau A, Schwenk H, Barrault L, et al. Very deep convolutional networks for text classification[C]//2017 European Chapter of the Association for Computational Linguistics(EACL2017). Valencia:ACL Press, 2017:1107-1116.
[5] Neculoiu P, Versteegh M, Rotaru M, et al. Learning text similarity with Siamese recurrent networks[C]//2016 Representation Learning for NLP(RLNLP). Berlin:ACL Press, 2016:148-157.
[6] Qiu X, Huang X. Convolutional beural tensor network architecture for community-based question answering[C]//2015 International Joint Conference on Artificial Intelligence(IJCAI 2015). Buenos Aires:AAAI Press, 2015:1305-1311.
[7] Pang L, Lan Y, Guo J, et al. Text matching as image recognition[C]//2016 Association for the Advancement of Artificial Intelligence(AAAI2016). Phoenix Arizona:AAAI Press, 2016:2793-2799.
[8] Kim S, Hong J H, Kang I, et al. Semantic sentence matching with densely-connected recurrent and co-attentive information[EB/OL]. (2018-05-15)[2019-05-06]. https://arxiv.org/abs/1805.11360. |