[1] 鲜学丰, 陈晓杰, 赵朋朋, 等. 基于上下文感知和个性化度量嵌入的下一个兴趣点推荐[J]. 计算机工程与科学, 2018, 40(4):616-625. Xian Xuefeng, Chen Xiaojie, Zhao Pengpeng, et al. Context-aware personalized metric embedding for next POI recommendation[J]. Computer Engineering & Science, 2018, 40(4):616-625.
[2] Ren Xingyi, Song Meina, E Haihong, et al. Context-aware probabilistic matrix factorization modeling for point-of-interest recommendation[J]. Neurocomputing, 2017, 241:38-55.
[3] Karatzoglou A, Lamp S C, Beigl M. Matrix factorization on semantic trajectories for predicting future semantic locations[C]//2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). New York:IEEE Press, 2017:1-7.
[4] Yao D, Zhang C, Huang J, et al. SERM:a recurrent model for next location prediction in semantic trajectories[C]//the 2017 ACM.[S.l.]:ACM, 2017:2411-2414.
[5] Khoshahval S, Farnaghi M, Taleai M, et al. A personalized location-based and serendipity-oriented point of interest recommender assistant based on behavioral patterns[M]//Lecture Notes in Geoinformation and Cartography. Cham:Springer International Publishing, 2018:271-289.
[6] Cao Jiuxin, Xu Shuai, Zhu Xuelin, et al. Effective fine-grained location prediction based on user check-in pattern in LBSNs[J]. Journal of Network and Computer Applications, 2018, 108:64-75.
[7] Liu Q, Wu S, Wang L, et al. Predicting the next location:a recurrent model with spatial and temporal contexts[C]//30th AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2016:194-200.
[8] Yu Chen, Liu Yang, Yao Dezhong, et al. Modeling user activity patterns for next-place prediction[J]. IEEE Systems Journal, 2017, 11(2):1060-1071.
[9] 杨洁. 基于历史轨迹的位置预测方法研究[D]. 杭州:杭州电子科技大学, 2015.
[10] Xu Zhenxing, Chen Ling, Chen Gencai. Topic based context-aware travel recommendation method exploiting geotagged photos[J]. Neurocomputing, 2015, 155:99-107.
[11] Chen N C, Xie W, Welsch R E, et al. Comprehensive predictions of Tourists' next visit location based on call detail records using machine learning and deep learning methods[C]//2017 IEEE International Congress on Big Data (BigData Congress).[S.l.]:IEEE, 2017:1-6. |